Режимы работы электродвигателей. Где применяются электродвигатели, основные типы и сроки эксплуатации Какой срок эксплуатации электродвигателя постоянного

Одной из причин выхода электродвигателей из строя раньше срока, на который он рассчитан, является перегрев. Высокая температура в первую очередь влияет на материал электроизоляции. В результате она становится ломкой, сыпется или даже выгорает, если нагрев электродвигателей превышает допустимые значения. В итоге — короткое замыкание, потеря мощности, поломка силового агрегата. Чтобы этого не допустить, необходимо разобраться в основных причинах, приводящих к перегреву оборудования.

Причины нагрева двигателей

В промышленности основная часть электродвигателей работает при постоянной нагрузке. К их перегреву могут привести:

  • пуск под нагрузкой, к которой двигатель не готов;
  • неправильный режим работы;
  • обрыв одной из фаз двигателя;
  • заклинивание подшипников вала.

Каждый механизм, укомплектованный электродвигателем определенной мощности, которая требуется для выполнения определенных задач. Попытка выполнить объем работы в более сжатые сроки приводит к такому явлению, как аварийные перегрузки, с которыми оборудование не справляется и выходит из строя. Чтобы этого избежать — необходимо строго следовать технологии производственного процесса.

Постоянные высокие нагрузки на пределе нормы также вызывают нагрев двигателя, защитить его можно системой безопасности, оказывающей влияние не на режим работы силового агрегата, а на скорость подачи сырья. Также следует обращать внимание на то, что оборудование должно работать в определенных условиях. Если двигатели дымососов должны работать при закрытых шиберах, то необходима система, препятствующая их открытию при низкой температуры воздуха.

Изоляция электродвигателей

Слабым звеном при перегреве двигателя является изоляция обмоток, при высокой температуре ухудшаются ее эксплуатационные характеристики. Чем выше степень нагрева, тем быстрее меняются в отрицательную сторону диэлектрические и механические свойства материалов. Изоляционные материалы, применяемые в электрических машинах, подразделяют на семь классов: У, А, Е, В, F, Н, С, предельно допустимая температура которых соответственно равна 90°, 105°, 120°, 130°, 155°, 180°, больше 180 °С.

Если к классу У относятся волокнистые материалы из шелка, целлюлозы, то класс С — это дорогие керамические материалы, иногда применяемые с кремнийорганическим связующим. Тщательно подбирая допустимую температуру нагрева обмоток к технологическим параметрам двигателя, можно существенно продлить срок его эксплуатации. При выборе необходимо учитывать не только максимально допустимую рабочую температуру, но и условия эксплуатации. Если некоторые двигатели имеют естественное охлаждение воздухом, то в большинстве случаев они надежно спрятаны под кожухами, где нет вентиляции.

Влияние температуры на срок службы двигателя

Как влияет нагрев двигателей на срок их эксплуатации? Этот вопрос настолько серьезен, что были проведены серьезные исследования. Они выявили, что перегрев всего на 10 градусов сокращает срок службы изоляционных материалов в два раза. Следующие 10 градусов укорачивают этот показатель еще в два раза. В итоге при перегревании электродвигателя на 40 градусов срок эксплуатации изоляции сокращается в 32 раза, что делает ресурс оборудования настолько минимальным, что его применение становится нерентабельным. Если перегрузки превышают допустимые на 50 %, то можно говорить о почти моментальном разрушении изоляционных материалов. Это лишний раз подчеркивает важность правильного выбора режима работы электродвигателя.

Что нужно для правильного выбора электродвигателя? Его основные электрические характеристики – это:

  • номинальное напряжение;
  • номинальная мощность;
  • скорость вращения вала.

Но двигатели могут работать по-разному. Самый легкий для электромотора режим работы описывается выражением «запустил и забыл». В момент запуска двигатель потребляет ток, в несколько раз больший номинального. Затем ток не изменяется во времени, механическая нагрузка на валу стабильна. При этом обмотки и магнитопроводы нагреваются до рабочей температуры, которая также остается постоянной.

Но двигатели приводят во вращение механизмы различного назначения. Некоторые из них требуют частых запусков и остановок, изменений направления вращения . Наглядный пример – работа электродвигателей в составе грузоподъемных механизмов: кранов, лебедок, тельферов. Оператор не даст отдохнуть электромотору, а будет манипулировать им столько, сколько потребуется для выполнения работы по перемещению груза. То же происходит с электродвигателями металлообрабатывающих станков: при установке детали, подгонке ее положения и в процессе обработки требуется неоднократные запуски и остановки станка и изменения направления вращения.

Нагрузка на валу также не всегда остается постоянной. В технологических процессах нередки случаи работы электродвигателей с резкопеременной загрузкой. Есть продукт – двигатель загружен, закончился – работает в холостую.

Все это приводит к изменению во времени электрических характеристик электродвигателей: тока и мощности. Но главное – изменяется характер нагрева обмоток и магнитопроводов. Потери на нагрев обмоток называются мощностью потерь в меди , а железа магнитопроводов – мощностью потерь в стали . Первые происходят за счет выделения тепла на активном сопротивлении обмотки, вторые – нагрева вихревыми токами, возникающими под действием магнитного поля. Для снижения потерь от вихревых токов магнитопроводы изготавливают из пакета тонких пластин. Их изолируют друг от друга, покрывая лаком. Но полностью избавиться от вихревых токов невозможно.

Так как при запуске двигатель потребляет повышенный ток, то и мощность, рассеиваемая в виде потерь в стали и меди, в момент пуска возрастает. Если после запуска мотор продолжает работу с постоянной нагрузкой, то пусковой нагрев не успевает оказать существенного влияния на его температуру. Если же запуски происходят постоянно, то установившаяся температура становится больше той, что была бы в случае продолжительной работы.

Перегрев электродвигателя снижает срок службы изоляции обмоток и стальных листов магнитопровода. При изготовлении ее рассчитывают на определенную температуру, а при ее превышении изоляция быстрее теряет свои характеристики.

Другим фактором, влияющим на срок службы электродвигателя, является механические воздействия на его детали . На проводник с током в магнитном поле действует сила, стремящаяся его переместить, сдвинуть с места. Прохождение пускового тока через обмотки приводит к увеличению на них механических нагрузок. Усилие передается на элементы, фиксирующие обмотки в пазах статора и ротора, расшатывает их.

Механические усилия испытывают и другие элементы конструкции электродвигателя: вал ротора, места крепления магнитопроводов, подшипники.

Почему нельзя учесть все эти факторы и изготавливать все электродвигатели способными им противостоять? Все дело в стоимости. Для ровной и продолжительной работы электродвигатель можно изготовить дешевле. А для эксплуатации в тяжелых условиях потребуются дополнительные усиления конструкции, изоляции, что вызовет удорожание двигателя в целом.

Поэтому, помимо основных электрических характеристик, электродвигателям устанавливают типовые режимы работы. Обозначаются они сокращениями от S1 до S10, и для каждого из них есть свое описание.

Рассмотрим основные особенности каждого из них.

S1 — продолжительный режим

Самый легкий и простой режим работы. Электродвигатель, будучи включенным, работает продолжительное время с неизменной нагрузкой. Он разогревается до рабочей температуры, после чего параметры работы не изменяются.

S2 — кратковременный режим

Электродвигатель включается на непродолжительное время и постоянную нагрузку. Времени работы недостаточно для того, чтобы был достигнут номинальный тепловой режим, а времени паузы после нее хватает, чтобы двигатель остыл практически до температуры окружающей среды.

В обозначение режима после S2 добавляется числовое значение продолжительности нагрузки в минутах.

S3 — повторно-кратковременный периодический режим

Последовательность режимов S2, повторяющихся с определенной частотой. При этом двигатель работает с неизменной нагрузкой, время покоя сменяется временем работы. То пуска не влияет на установившуюся температуру.

После обозначения S3 в маркировке указывается коэффициент циклической продолжительности включения (К=∆tр/Т) в процентах.

S4 — режим S3 с пусками

В этом режиме продолжительность работы становится соизмеримой с продолжительностью пуска. В результате цикл работы выглядит так: «пуск-работа-остановка». Он циклически повторяется.

Параметрами режима являются:

  • коэффициент К=∆tр/Т;
  • момент инерции двигателя (Jд), в кг∙м 2
  • момент инерции нагрузки (Jн), в кг∙м 2

Их значения указываются после знака S4.

S5 — режим S3 с электрическим торможением

По сравнению с предыдущим в цикл работы добавляется электрическое торможение, физический смысл которого – преобразование механической энергии вращения вала двигателя обратно в электрическую. При этом происходит отбор энергии от вала, и он быстрее останавливается.

Виды электрического торможения:

  • реверсивное (запуск вращающегося электродвигателя в обратную сторону);
  • реостатное (отключенная от сети обмотка статора подключается к тормозным резисторам);
  • рекуперативное (энергия вращающегося мотора заряжает аккумуляторы или отдается в сеть);
  • динамическое (отключенная от сети переменного тока отмотка статора подключается к источнику постоянного тока);
  • комбинации способов между собой.

После обозначения S5 указываются параметры, аналогичные режиму S4.

S6 — непрерывный периодический режим с кратковременной нагрузкой

Электродвигатель постоянно вращается, но циклически чередуется холостой ход и работа под нагрузкой.

Режим характеризуется коэффициентом К=∆tр/Т.

S7 — режим S6 с электрическим торможением

К режиму S6 добавляется торможение. Параметры те же, что и у S4.

S8 — режим S6 с взаимозависимыми изменениями скорости вращения и нагрузки

Как видно из названия, в этом режиме циклически изменяются нагрузка двигателя и частота его вращения. Причем эти два параметра связаны между собой. Измерение частоты вращения производится, например, путем изменения числа пар полюсов для асинхронных электродвигателей с короткозамкнутым ротором.

Транскрипт

1 МЕТОДЫ ОЦЕНКИ СРОКА СЛУЖБЫ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ Закладной А.Н., к.т.н., доцент; Закладной О.А., аспирант Национальный технический университет Украины «КПИ» Асинхронные двигатели, как правило, рассчитаны на срок службы 15-0 лет без капитального ремонта при условии правильной их эксплуатации. Под правильной эксплуатацией понимается работа в соответствии с инальными параметрами, указанными в паспорте АД. В реальной жизни имеет место значительное отклонение от инальных режимов эксплуатации. В настоящее время более 70% эксплуатируемого парка асинхронных двигателей составляют машины, побывавшие в капиталь ремонте хотя бы один раз . В подавляющем большинстве случаев (85-95%) отказы АД мощностью свыше 5 квт связаны с повреждением изоляции обмоток и распределяются следующим образом: межвитковые замыкания 93%, пробой межвитковой изоляции %. Остальные отказы в работе вызваны механическими повреждениями . Таким образом, срок службы асинхронного электродвигателя определяется, в основ, качеством изоляции обмоток. Надежность электрической машины свойство машины выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортировки. Надежность является комплексным свойством, которое в зависимости от назначения машины и условий ее эксплуатации может включать в себя безотказность, долговечность и сохраняемость. Срок службы показатель долговечности, а его прогнозирование сводится к расчету надежности электрической машины . В настоящее время надежность двигателей электроприводов во всех областях промышленности очень низкая. Ежегодно выходят из строя и ремонтируются до 30% парка электрических машин. Подавляющее большинство их после ремонта возвращается на предприятие и эксплуатируется до следующего выхода из строя. Машина может ремонтироваться 3-4 раза, а время наработки на отказ составляет 0,5... 1,5 года. Исследованы механизмы влияния факторов на эксплуатационную надежность и срок службы асинхронных двигателей. Основными из них являются следующие: качество активных и конструкционных материалов, используемых при изготовлении электрических машин; качество изготовления электрических машин; качество электроэнергии; несоответствие условий применения машин их исполнению, пусковым и рабочим характеристикам; отсутствие надлежащего обслуживания машин и низкое качество их ремонта.

2 Наиболее часто егрев обмоток АД возникает при заторможен роторе (заклинивании), обрыве фазы статора, отклонении напряжения сети от нормируемых значений, несимметрии питающего напряжения . В тех случаях, когда двигатель работает при неизменной тематуре изоляции, оценить скорость процесса старения изоляции или срок службы машины сравнительно несложно. Известны зависимости, связывающие срок службы изоляции данного класса с определенным постоянным уровнем тематуры в течение срока службы. Первые работы в этом направлении имели, главным образом, опытный характер и относились к изоляции класса А. В результате исследований было сформулировано правило «восьми градусов» (правило Монтзигера). В соответствии с этим правилом повышение тематуры на каждые 8 С сверх предельно допустимой сокращает срок службы вдвое . R = R = Δ b R e, (1) где R - срок службы при увеличенной тематуре; R x - срок службы при тематуре (определяется в зависимости от класса изоляции, например, 7 лет при =105 С); Δ - постоянное приращение тематуры (для применяемых классов изоляции находится в диапазоне 8-10 К), b коэффициент, определяемый классом изоляции. Значения Δ не могут быть названы точно, если недостаточен объем эксиментальных данных. Для изоляционных материалов класса А обычно принимают Δ=8 K. Термоактивная изоляция (класса В) повысила это значение до Δ=10 К. Логарифмический характер зависимости (1) диктует жесткие правила эксплуатации электрических машин. Согласно именно пиковые тематуры определяют практический срок службы машины. С этой точки зрения качество конструкции тем выше, чем меньше отношение пиковой тематуры к средней. Формула (1) является приближенной, но она позволяет верно произвести оценку конструкций электрических машин и режимов их эксплуатации, особенно при экоических расчетах. Более строгий подход к исследованию явления старения изоляции под влиянием тематуры связан с применением общих законов кинетики химических реакций. Существует следующая зависимость скорости протекания химических реакций от тематуры: B ln K = + A, () где абсолютная тематура (градусы Кельвина), K - постоянная скорости реакции. Коэффициенты А и В в уравнении () имеют определенный физический смысл и связаны с постоянными, характеризующими состав и структуру вещества, участвующего в реакции. B ln = G, (3)

3 где B = Ea R и G постоянные, характеризующие состав и структуру вещества , Ea - избыточное по сравнению со средней величиной количество энергии (энергия активации), которым должна обладать молекула вещества, чтобы оказаться способной к химическому взаимодействию; R =8,3 Дж/град моль универсальная газовая постоянная. На основании этого, зная срок службы изоляции R 1 при тематуре 1, можно определить ее срок службы R при тематуре из следующего уравнения: 1 1 R = R1 exp B (4) 1 Эксиментальное значение В для класса изоляции А согласно составляет 0, К, для класса В 1, К. Поскольку такой расчет учитывает лишь тепловое старение, а во время работы машины изоляция испытывает еще электрические и механические воздействия, то можно предположить, что в действительности ее разрушение вследствие пробоя произойдет значительно раньше. Представляет интерес определение влияния кратковременных егрузок на износ изоляции и сокращение срока ее службы. Согласно последним исследованиям, длительная работа двигателя с токовой егрузкой всего на 5% от инального сокращает срок его службы в 10 раз . Износ изоляции в единицу времени при постоянной тематуре, С, 1 1 b ξ = = e, (5) R R где Т продолжительность службы изоляции, С, b определенные коэффициенты. Размерность ξ - время -1, и при изменяющейся в течение времени тематуре ξ = 1 e b d R 0 Поскольку значительный интерес представляет относительное уменьшение срока службы изоляции, будем в дальнейшем характеризовать износ не величиной ξ, а безразмерной величиной ξ C = z. Пренебрегая теплоотдачей при кратковременных егрузках, находим износ за время нагрева 1 током I = ki согласно (6) (e 1) b e z нагр =, (7) где - тематура обмотки, обусловленная инальными потерями, выделяющимися в самой обмотке при иналь токе в ней, Δ - превышение тематуры обмоток над тематурой, - время егрузки. При работе до егрузки с инальным режимом превышение тематуры обмоток при егрузке может быть определено как

4 Δ = Δм (k. 1), (8) где Δ м. - составляющая превышения обмотки статора, определяемая потерями в обмотках статора, k кратность тока в обмотке по отношению к инальу, Т постоянная времени нагрева двигателя. Так как тематура обмоток двигателя после окончания егрузки не может сразу уменьшиться до установившегося значения, дополнительный износ изоляции происходит еще и во время охлаждения. Будем считать, что после окончания егрузки режим возвращается к исходу (инальу). В расчете принимается постоянная времени при охлаждении такая же, как и при нагревании, поскольку предполагается, что двигатель после егрузки продолжает работать с той же скоростью вращения, что и до егрузки. Незначительное или кратковременное снижение скорости за время егрузки оказывает незначительное влияние на постоянную времени нагрева. Отношение износов изоляции при охлаждении и при нагреве зависит от величины егрузки и значения постоянной времени при нагреве обмотки, причем при значениях Т > 300 с износ происходит практически только за время охлаждения . Износ изоляции за время охлаждения согласно b e = z охл e e (9) Суммарный износ за время одного цикла нагрева и охлаждения равен сумме частичных износов z = z нагр + z охл, b e Δ b = + + z 4e e 1 5, (10) Заменяя Δ из уравнения (8), получаем b. (k 1). (k 1) м м e z = 4e + e (1 +) 5. (11) м. (k 1) Из этого уравнения следует, что износ изоляции имеет при некотором значении постоянной времени нагрева минимальную величину. Отметим, что при значениях 300 с даже при небольших и относительно длительных егрузках износ происходит только за время охлаждения. Существенное влияние на срок службы АД оказывает качество питающего напряжения, регламентированное ГОСТ При несимметрии напряжений % срок службы АД сокращается на 10,8%. При несимметрии напряжений 4%, так же как и при уменьшении напряжения на 10% срок службы АД сокращается вдвое. Сопротивление обратной последовательности индукционных машин в 5-8 раз меньше сопротивления прямой. Т.о., двигатели обладают фильтрующими свойствами по отношению к токам обратной последовательности, поэтому даже незначительная несимметрия напряжений (1%) создает значительную несимметрию токов (7% - 9%) в обмотках.

5 Токи обратной последовательности вызывают дополнительный нагрев, что приводит к существену снижению срока службы АД. В приведена формула для расчета тематуры обмоток АД в функции несиметрии напряжения ε u: [ + (ε %) ] = (1) 1 u где тематура обмоток при симметрич напряжении сети, εu - коэффициент несимметрии напряжений равный отношению напряжения обратной последовательности к инальу. Из этого выражения следует, что при ε u = 3,5% тематура обмоток двигателя повышается на 5%. Если АД длительное время работает при понижен напряжении, то из-за ускоренного износа срок службы его уменьшается. Приближенно срок службы изоляции Т можно определить по формуле: R R =, (13) K где R - срок службы изоляции двигателя при инальных напряжении и нагрузке, K - коэффициент, зависящий от значения и знака отклонения напряжения, а также от коэффициента загрузки двигателя: K (47 7,55 1) = δ δ + k, при -0,< з δ <0 (14) k з K =, при 0, δ >0, где δ - отклонение напряжения, kз - коэффициент загрузки АД. Поэтому с точки зрения нагрева АД более опасны в рассматриваемых пределах отрицательные отклонения напряжения. Несинусоидальность напряжений приводит к увеличению активного сопротивления токам высших гармоник, что вызывает а АД значительные потери активной мощности, повышенный егрев и, как следствие, - сокращение срока службы. В выводится упрощенная формула для определения егрева обмоток вследствие несинусоидальности и несимметрии питающего напряжения: Δ = 80 ε + ν 1,55 1,39 (15) u b ν= ν ν где - отношение напряжения ν-й гармоники к инальу напряжению, ν ν ер гармоники, Δ =. Запишем относительное значение продолжительности жизни изоляции АД в виде z = exp() и, подставляя в него формулу (15), получим: = ε + ν z exp 80 1,55 1,39. (16) u ν= ν ν В предложена формула для расчета установившейся тематуры обмотки, учитывающая потери в электродвигателе и изменение параметров материала проводника:

6 a + k Δ = Δ, (17) 1+ a αδ(k 1) ΔРс. н. где a = - коэффициент инальных потерь в электродвигателе, ΔРм. н. α=0,0043 1/ С тематурный коэффициент сопротивления меди, I k = - кратность рабочего тока по отношению к инальу. Здесь под I инальным понимается ток, вызывающий инальный нагрев обмотки АД. В этом случае процесс нагрева описывается выражением: I a + I Δ = Δ e 1 + Δначe, (18) I а 1+ αδ I 1 где Δ нач - начальное превышение тематуры. Далее рассчитывается срок службы по формуле (1). На рис. 1 представлены эксиментальная кривая (1) изменения ресурса электродвигателя и различные оценочные кривые (, 3, 4). Точное построение реальной кривой невозможно, но ее можно заменить прямой, построенной по двум полученным эксиментально точкам: вая - начальный ресурс изоляции (определен, например, эксиментальным методом), вторая - пробой изоляции. Кривая построена с учетом фактора егрузок по току с использованием формулы (11). Кривая 3 построена с использованием формул (1), (18), в которых отражено влияние таких факторов, как тематура обмоток и коэффициент загрузки АД в течение срока службы. Кривая 4 построена с учетом дополнительно фактора качества питающего напряжения. Рис.1

7 Таким образом, из всех вариантов расчета наиболее достоверным является расчет с учетом факторов питающего напряжения, коэффициента загрузки, тематуры обмотки и окружающей среды. Вывод. Одной из главных составляющих энергетической эффективности АД является наиболее длительный срок службы. В работе рассмотрены три метода оценки срока службы АД. Первый учитывает фактор егрузки, второй - тематуру обмотки, третий - качество питающего напряжения. Предложенный метод реализует комплексный подход с учетом основных влияющих факторов - питающего напряжения, коэффициента загрузки, тематуры обмотки и окружающей среды. Метод обеспечивает наибольшую точность определения срока службы АД. Литература 1.Бешта А.С., Желдак Т.А. Определение потерь в стали асинхронного двигателя по методике холостого хода // Сб. Статей «Проблемы создания новых машин и технологий», в.1. Кременчуг, Слоним Н.М. Испытания асинхронных двигателей. М., Энергия, Котеленец Н.Ф., Кузнецов Н.Л. Испытания и надежность электрических машин. М., Высшая школа, Воробьев В.Е., Кучер В.Я., Прогнозирование срока службы электрических машин: Письменные лекции. СПб.: СЗТУ, с. 5. Ковалев А.П., Шевченко О.А., Якимшина В.В., Пинчук О.Г. Оценка пожарной опасности электродвигателей, эксплуатирующихся на промышленных предприятиях Украины / Вісник Кременчугського держ. політехн. Університета, 004, вип /004 (5). 64 с. 6. Филиппов И.Ф. Теплообмен в электрических машинах. Л.: Энергоатомиздат, Данилов И. А., Иванов П. М. Общая электротехника с основами электроники. Москва: Высшая школа, Сыромятников И.А. Режимы работы асинхронных и синхронных двигателей/ Под ред. Л.Г. Мамиконянца 4-е изд., ераб и доп. М.: Энергоатомиздат, с., ил. 9. Повышение качества энергии в электрических сетях / Шидловский А.К., Кузнецов В.Г. Киев: Наук. думка, с. 10. Овчаров В.В. Эксплуатационные режимы работы и непрерывная диагностика электрических машин в сельскохозяйствен производстве. / Киев: Изд-во УСХА, с.


УДК: 621.31 Ю.Г. Качан, д-р техн. наук, А.В. Николенко, канд. техн. наук, В.В. Кузнецов (Украина, Днепропетровск, Национальная металлургическая академия Украины) О ВЛИЯНИИ ГАРМОНИЧЕСКОГО СОСТАВА ПИТАЮЩЕГО

А.Н. Бурковский, О.А. Федюк, О.А. Рыбалко, Л.К. Шихова, Л.Д. Ильюшенкова ПОВЫШЕНИЕ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ДОПУСТИМОЙ МОЩНОСТИ ЗАКРЫТОГО АСИНХРОННОГО ДВИГАТЕЛЯ В КРАТКОВРЕМЕННОМ РЕЖИМЕ ПРИ ПЕРЕМЕННОЙ НАГРУЗКЕ

АНАЛИЗ РАБОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ ПРИ ПОНИЖЕННОЙ ЧАСТОТЕ ПИТАЮЩЕЙ СЕТИ УДК 621.313 С.П. Голиков Рассмотрена оптимизация работы автономных дизель-генераторных установок с целью экономии топлива и связанное

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВО "СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ" А-ЗРДжендубаев МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ ПО ЭЛЕКТРОПРИВОДУ Для студентов

Тема 0. Основы электропривода Вопросы темы. Электропривод: определение, состав, классификация.. Номинальные параметры электрических машин. 3. Режимы работы электродвигателей. 4. Выбор типа и мощности электродвигателя..

***** ИЗВЕСТИЯ ***** (6), 0 АГРОПРОМЫШЛЕННАЯ ИНЖЕНЕРИЯ УДК 6.34.:6.36.95.4 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ХАРАКТЕРИСТИКИ НАГРЕВА ЭЛЕКТРОДВИГАТЕЛЕЙ И ТЕПЛОВЫХ РЕЛЕ С.В. Волобуев, старший преподаватель И.Я.

Рабочие режимы ТГ и ГГ Под рабочими режимами работы генератора подразумевают такие режимы, в которых он может работать длительное время. К ним относятся режимы работы машин с различными нагрузками от минимально

Http://www.jurnal.org/articles/8/elect7.htm Page of 5 3.6. Анализ влияния высших гармонических составляющих на безотказность электроизоляционных покрытий Шпиганович Александр Николаевич доктор технических

УДК 629.423.31 Мальцев А.В. Повышение надежности изоляционных конструкций тяговых двигателей электровозов/а.в. Мальцев//Проблемы трансферта современных технологий в экономику Забайкалья и железнодорожный

УДК 621.313.333.018.782.3 Е.А. Вареник, М.М. Федоров, В.Е. Михайлов ТЕПЛОВЫЕ ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕМЕНТАХ КОНСТРУКЦИИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ ПРИ НЕПОДВИЖНОМ РОТОРЕ Постановка проблемы. В различных режимах

УДК 621.317.785.088.001.5 Майер B. Я. ИССЛЕДОВАНИЕ ВЛИЯНИЯ НЕСИНУСОИДАЛЬНЫХ ОТКЛОНЕНИЙ НАПРЯЖЕНИЯ НА ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ Согласно ГОСТ 13109-87 отклонение напряжений

УДК 62.33.333 Бурковский А.Н. Рыбалко О.А. Кустовая Е.Ю. Мельник А.А. Ильюшенкова Л.Д. Особенности теплового расчета закрытых обдуваемых асинхронных двигателей в режимах S5 S7. Основные положения методики

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ МЕЖВИТКОВЫХ КОРОТКИХ ЗАМЫКАНИЙ И НЕСИММЕТРИИ НАПРЯЖЕНИЯ В АСИНХРОННЫХ ЭЛЕКТРИЧЕСКИХ МАШИНАХ Реферат переходная модель для асинхронных электрических машин со статорной обмоткой, которая

УДК 621. 313. 323 Проектирование тяговых частотно-регулируемых двигателей В.Я. Беспалов 1, А.Б. Красовский 2, М.В. Панихин 2, В.Г. Фисенко 1 1 НИУ МЭИ, Москва 111250, Россия 2 МГТУ им. Н.Э. Баумана, Москва

Выбор сечения кабеля и провода Сечение проводов и кабелей определяют, исходя из допустимого нагрева с учетом нормального и аварийного режимов, а также неравномерного распределения токов между отдельными

ОЦЕНКА ПАРАМЕТРОВ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ ОТКАЗОВ ОБМОТОК СТАТОРОВ ПРИ ЭКСПЛУАТАЦИИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ В ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ С.А. Смолярчук, А.Л. Федянин Томский политехнический университет Введение

УДК 61.311 СНИЖЕНИЕ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ А.С. Енин., К.Б. Корнеев, Т.И. Узикова Новая редакция Федерального закона 61-ФЗ от 3 ноября 009 года «Об энергосбережении и о повышении

В гл. 8 был оценен экономический ущерб от повышенного потребления реактивной мощности асинхронными двигателями (АД), составляющие которого приведены на рис. 5. Чтобы получить более полное представление

Выбор сечения проводов и кабелей Общее положение по расчету электрической сети. Конечной целью расчета электрической сети жилого дома, как и всякого другого здания, является выбор сечений проводов и аппаратов

Вариант 1. 1. Назначение, классификация и устройство трансформатора. 2. Абсолютная и относительная погрешности измерения. Класс точности измерительного прибора. 3. При увеличении частоты вращения генератора

ЗАДАНИЕ Для электромеханической системы электропривода, трехфазного асинхронного двигателя с короткозамкнутым ротором и механической передачи:. Рассчитать и построить механическую характеристику двигателя

200 УДК 621.313 К. В. ХАЦЕВСКИЙ Ю. Н. ДЕМЕНТЬЕВ А. Д. УМУРЗАКОВА Омский государственный технический университет Томский политехнический университет МОДЕЛЬ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ

Введение Домашнее контрольное задание Технические данные асинхронных двигателей 4 Методика расчетов значений параметров и характеристик асинхронных двигателей по каталожным данным Расчет активных и индуктивных

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2009. 4(58). 65 70 УДК 62.3 ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ СИЛОВЫХ ТРАНСФОРМАТОРОВ В РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ 6 35 кв НЕФТЕПРОМЫСЛОВ В.М. ЛЕВИН, Д.В. КУЗЬМИНА Дана оценка состояния

Глава 2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ И РЕГУЛИРОВОЧНЫЕ СВОЙСТВА ЭЛЕКТРОПРИВОДОВ ПОСТОЯННОГО ТОКА 2.1. Механические характеристики электродвигателей и рабочих механизмов Механической характеристикой электродвигателя

Реферат Выпускная квалификационная работа 114 стр., 18 рисунков, 15 таблиц, 17 источников, 7 л. графического материала. Ключевые слова: асинхронный, ротор, пусковая характеристика, рабочая характеристика.

УДК 621.313.181 В.В. НАНИЙ, канд. техн. наук, доц., НТУ "ХПИ", Харьков А.Г. МИРОШНИЧЕНКО, канд. техн. наук, доц., НТУ "ХПИ", Харьков В.Д. ЮХИМЧУК, канд. техн. наук, проф., НТУ "ХПИ", Харьков А.А. ДУНЕВ,

Тема 3. Статическая устойчивость генераторов возобновляемых источников энергии (2 часа) Основные понятия и определения статической устойчивости Деление режимов электрической системы на установившиеся и

Институт электротехники Направление подготовки Магистерская программа 13.4.2 Электроэнергетика и электротехника Электропривод и автоматика Банк заданий по профильной части вступительного испытания в магистратуру

УДК 621.31 МЕТОДИКА ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОПРОВОДКИ ЗДАНИЙ Никольский О.К. Гончаренко Г.А. Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Россия Большинство

11 ИНТЕГРАЛЬНЫЕ ПОКАЗАТЕЛИ ПЕРЕХОДНЫХ ПРОЦЕССОВ 11.1 Общие положения После расчета нагрузочных диаграмм переходных процессов по любому из трех путей (по аналитическим выражениям, анализом ЛАЧХ, интегрированием

УДК 621.316.577 ФИЛЬТРОВАЯ ЗАЩИТА ПОТРЕБИТЕЛЬСКИХ ЭЛЕКТРОУСТАНОВОК Канд. техн. наук, доц. ПОЛУЯНОВ М. И., СЧАСТНАЯ Е. С. Белорусский национальный технический университет Одна из важнейших задач в области

Аннотация рабочей программы дисциплины направление подготовки: 23.05.05 Системы обеспечения движения поездов направленность: Телекоммуникационные системы и сети железнодорожного транспорта Дисциплина:

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НИЗКОТЕМПЕРАТУРНЫХ И ПИЩЕВЫХ ТЕХНОЛОГИЙ

3. Копылов Ю.В. «Расчёт магнитной цепи постоянного тока». Учебное пособие. Томск. Изд. ТПИ, 1985 4. Буль Б. К. Основы теории и расчёта магнитных цепей. М.-Л., издательство Энергия, 1964 5. Чунихин А. А.

ПУСКОВЫЕ КОНДЕНСАТОРЫ CBB60. отечественный аналог К78-22, К78-25, К78-36, К78-43. Конденсаторы предназначены для запуска асинхронных электродвигателей и создания фазосдвигающей цепи после выхода на рабочий

Тема 3. Пуск трехфазных асинхронних двигателей с короткозамкнутым и фазным роторами. План 1. Пусковые свойства и пусковой ток асинхронных двигателей. 2. Пуск двигателей с фазным ротором: схема пуска, выбор

3 ЛАБОРАТОРНАЯ РАБОТА 1 ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА 1. Цель работы Изучение основных эксплуатационных особенностей генератора постоянного тока (ГПТ) в зависимости от способа его

ISSN 2219-7869. НАУЧНЫЙ ВЕСТНИК ДГМА. 1 (11Е), 2013. 164 ОСОБЕННОСТИ ТЕПЛОВОГО СОСТОЯНИЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ ПРИ НЕСИММЕТРИИ ПИТАЮЩЕГО НАПРЯЖЕНИЯ Федоров М. М., Ивченков Н. В., Ткаченко А. А. Выполнен

УДК 61.31 СОСТОЯНИЯ ИЗОЛЯЦИИ ОБМОТОК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ Г. В. Суханкин В статье рассматривается модель измерения диагностического показателя изоляции электрической машины, в частности, асинхронного

1 В самом начале работы пользователю необходимо зарегистрироваться. При регистрации пользователю присваивается определённая роль. Роль определяет возможности пользователя. Самая простая роль это «Потребитель»

УДК 6.33.333 АНАЛИТИЧЕСКИЙ СПОСОБ РАСЧЕТА ПУСКОВОГО РЕОСТАТА ДЛЯ АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ С УЧЕТОМ НЕЛИНЕЙНОСТИ ЕГО МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК А.Ю. Соколов Пусковые свойства электродвигателя

Отчет 479/07-2014 Электродвигатель привода насоса P27220 Исполнители работ Инженер-электрик отдела технического сервиса ООО «Практическая Механика» Попов В.Н. тел.: +7 812 332-3474 моб.: +7 911 988-8739

УДК 61.315 Галеева Р.У., ст. преподаватель Казанский Государственный Энергетический Университет Россия, г.казань Альмиева Д.С., магистр Казанский Государственный Энергетический Университет Россия, г.казань

ОЦЕНКА СОСТОЯНИЯ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ПРЕДПРИЯТИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКОГО КОМПЛЕКСА УКРАИНЫ Ю.А. Папаика, А.Г. Лысенко, Национальный горный университет, Украина Приведены

Тема 2.5 Электромагнитный момент асинхронного двигателя. План 1. Потери и коэффициент полезного действия асинхронного двигателя. 2. Электромагнитный момент асинхронного двигателя. 3. Влияние напряжения

УДК 621.313.333.018 О.Г. ПИНЧУК (канд.техн.наук) Донецкий национальный технический университет И.П. КУТКОВОЙ Донбасская государственная машиностроительная академия [email protected] ОЦЕНКА ТЕПЛОВОГО

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

4.2 Работа 9 Статические характеристики синхронного двигателя при питании от преобразователя частоты Цель работы Изучение режимов работы двигателя (двигательного, рекуперации), экспериментальное исследование

Контрольное задание Трехфазный асинхронный двигатель Основным параметром, характеризующим режим работы асинхронного двигателя, является скольжение s относительная разность частоты вращения ротора двигателя

Измерительные трансформаторы тока и напряжения Основные стандарты на измерительные трансформаторы ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия»; ГОСТ 7746-2001 «Трансформаторы тока.

УДК 62-83 Зюзев А.М., Метельков В. П. ОЦЕНКА ТЕПЛОВОГО РЕСУРСА ЭЛЕКТРОДВИГАТЕЛЯ ШТАНГОВОЙ ГЛУБИННОЙ НАСОСНОЙ УСТАНОВКИ Уральский федеральный университет им. первого Президента России Б.Н.Ельцина В данном

Лекция 4. Основные количественные показатели надежности технических систем Цель: Рассмотреть основные количественные показатель надежности Время: 4 часа. Вопросы: 1. Показатели оценки свойств технических

ХАРАКТЕРИСТИКИ АСИНХРОННЫХ МАШИН С КОРОТКОЗАМКНУТЫМ РОТОРОМ В РЕЖИМАХ ДВИГАТЕЛЯ И ГЕНЕРАТОРА Галиновский А.М., к.т.н., доцент, Дубчак Е.М., ст. преподаватель, Могелюк С.О., студент КПИ им. Игоря Сикорского,

МЕХАНИЗМЫ СОБСТВЕННЫХ НУЖД ТЭС. ОБЩАЯ ХАРАКТЕРИСТИКА. САМОЗАПУСК ДВИГАТЕЛЕЙ С.Н. БЕЛОГЛАЗОВ АЛЕКСЕЙ ВЛАДИМИРОВИЧ, к.т.н., доцент кафедры электрических станций (ЭлСт), ФЭН, II- (кафедра) Лекции 9- Новосибирск,

44 УДК 681.54: 621.313 (045) УПРАВЛЕНИЕ ДИНАМИЧЕСКИМИ РЕЖИМАМИ АСИНХРОННОГО ЭЛЕКТРОПРИВОДА С ПОВЫШЕННЫМ ПУСКОВЫМ МОМЕНТОМ Национальный авиационный университет Красношапка Н. Д., к.т.н. Рассмотрены вопросы

050202. Двигатель постоянного тока с параллельным возбуждением Цель работы: Ознакомиться с устройством, принципом действия двигателя постоянного тока с параллельным возбуждением. Снять его основные характеристики.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Глава первая ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЭЛЕКТРООБОРУДОВАНИЯ 1.1. СИСТЕМЫ ЭКСПЛУАТАЦИОНИОГО КОНТРОЛЯ Основные понятия. Надежность оборудования определяется его конструкцией и качеством изготовления. Однако

Отчет 204/10-2013 Электродвигатель насоса 1 Исполнители работ Инженер-электрик отдела технического сервиса ООО «Практическая Механика» Попов В.Н. тел.: +7 812 332-3474 моб.: +7 911 988-8739 e-mail: [email protected]

6. ТРАНСФОРМАТОРЫ Трансформатором называется статический электромагнитный аппарат, служащий для преобразования электрической энергии переменного тока с одними параметрами в электрическую энергию с другими

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ

Распределительные трансформаторы 6(10)кВ. Проблема качества электрической энергии в сетях 0,4 кв. Исследование несимметричной работы трансформаторов. Силовой трансформатор является одним из важнейших элементов

Math-Net.Ru Общероссийский математический портал В. Г. Гольдштейн, А. Ю. Хренников, Причины повреждения обмоток силовых трансформаторов и расчет токов короткого замыкания, Матем. моделирование и краев.

УДК 621.313.333.001. СРАВНИТЕЛЬНАЯ ОЦЕНКА ПЕРЕХОДНЫХ ПРОЦЕССОВ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙС РАЗЛИЧНЫМИ РОТОРАМИ Мартынов В.Н., Олейников А.М. Представлены результаты экспериментального исследования переходных

Новной модуль который будет базироваться на основе частотного преобразователя, и его компонентами будут служить самые разнообразные модули, начиная с того что возможно создать совершенно разные модули

ЭЛЕКТРОТЕХНИКА И ЭНЕРГЕТИКА УДК 61.3.018.3 ПОЛУЧЕНИЕ ЗАВИСИМОСТЕЙ СОПРОТИВЛЕНИЙ ИЗОЛЯЦИИ КАБЕЛЯ АВбБШв (4 70) ОТ ЧАСТОТЫ ПИТАЮЩЕГО НАПРЯЖЕНИЯ ПРИ СХЕМЕ ПОДКЛЮЧЕНИЯ «ФАЗА ОПЛЕТКА» И «ФАЗА ФАЗА» А. А. АЛФЕРОВ,

ГОСТ 12049-75 Двигатели постоянного тока для машин напольного безрельсового электрифицированного транспорта. Общие технические условия Дата введения 1977-01-01 * ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного

4. Школа для электрика - Использование сервоприводов при автоматизации оборудования, URL: http://electricalschool.info/main/drugoe/226- ispolzovanie-servoprivodov-pri.html (дата обращения 07.09.17). Научный

УДК 621.313.13 А.В. ТАРНЕЦКАЯ, аспирант (КузГТУ) И.Ю. СЕМЫКИНА, д.т.н., доцент (КузГТУ) г. Кемерово ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ ПУСКА СИНХРОННЫХ ДВИГАТЕЛЕЙ С ПОСТОЯННЫМИ МАГНИТАМИ Многие научно-практические

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ЧЕЛЯБИНСКАЯ ГОСУДАРСТВЕННАЯ АГРОИНЖЕНЕРНАЯ

Кацман электрические машины решебник >>> Кацман электрические машины решебник Кацман электрические машины решебник Режимы работы и устройство асинхронной машины 137. Трехобмоточные трансформаторы и автотрансформаторы

Направление подготовки 13.03.02 «Электроэнергетика и электротехника» Профиль подготовки «Электропривод и автоматика промышленных установок и технологических комплексов» Изменения и дополнения к РПД Б1.В.ДВ.7.1

УДК 621.311 ДИАГНОСТИКА И ПРОГНОЗИРОВАНИЕ ОСТАТОЧНОГО РЕСУРСА ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРОПРИВОДА НАСОСНО- КОМПРЕССОРНОГО ОБОРУДОВАНИЯ НЕФТЕХИМИЧЕСКИХ ПРОИЗВОДСТВ А.В. Самородов Филиал Государственного образовательного

Срок службы электродвигателя – это период времени, в течение которого изготовитель обязуется обеспечивать потребителю возможность использовать электродвигатель по назначению и несет ответственность за существенные недостатки, которые могут возникнуть в электродвигателя.

Актуальность статьи проверена нашими юристами по состоянию на 21.12.2019 г.

В течение срока службы электродвигателя потребитель имеет полное право на:

  • возможность использования электродвигателя;
  • ремонт и соответствующее обслуживание электродвигателя;
  • предъявление требований об безвозмездном устранении существенных недостатках электродвигателя, даже, если кончился гарантийный срок;
  • возмещение вреда, возникшего из-за электродвигателя.

Если срок службы на электродвигатель не установлен

Если срок службы электродвигателя не установлен, то производитель обязан обеспечить вышеуказанные права потребителя в течение 10 лет. Таким образом, как правило, производителю гараздо выгодней установить срок службы, чем его не устанавливать.

Как узнать срок службы электродвигателя

Срок службы товара устанавливается изготовителем, при этом изготовитель (исполнитель, продавец) обязан своевременно предоставлять потребителю необходимую и достоверную информацию относительно электродвигателя, которая в обязательном порядке должна содержать сведения о сроке службы электродвигателя.

Когда изготовитель обязан установить срок службы

изготовитель обязан устанавливать срок службы товара длительного пользования, в том числе комплектующих изделий (деталей, узлов, агрегатов), которые по истечении определенного периода могут:

  • представлять опасность для жизни, здоровья потребителя,
  • причинять вред его имуществу или окружающей среде.

Список товаров длительного пользования, в том числе комплектующих изделий (деталей, узлов, агрегатов), которые по истечении определенного периода могут представлять опасность для жизни, здоровья потребителя, причинять вред его имуществу или окружающей среде содержится в , утверждаемом Правительством Российской Федерации.

Когда изготовитель не обязан устанавливать срок службы

Во всех остальных случаях установление срока службы является правом изготовителя, т.е. он может и не устанавливать срок службы.

исчисление срока службы электродвигателя

Срок службы может исчисляться единицами времени, а также иными единицами измерения -километрами, метрами и т. п. исходя из функционального назначения товара.

Срок службы на электродвигатель начинает течь с момента передачи электродвигателя потребителю, если договором не предусмотрено иное.

Электродвигатели – незаменимые помощники на различных производственных, промышленных и других предприятиях, где необходимо наладить качественную работу множества механизмов, а также привести в действие какие-либо приборы.

Срок эксплуатации электродвигателей

Если Вы планируете приобрести какой-либо электродвигатель, то, в первую очередь, ориентируйтесь на его технические характеристики, ведь моделей и разновидностей электродвигателей достаточно много. Так в продаже имеются крановые, фланцевые, щеточные, маломощные, высокооборотистые и другие электродвигатели, которые отличаются не только мощностью, но и необходимым напряжением и питанием от сети.

Необходимо помнить, что срок службы электродвигателя напрямую зависит от условий его эксплуатации. Поэтому перед применением внимательно ознакомьтесь с инструкцией к электродвигателю, так как многие двигатели не рекомендуется использовать при температуре выше, а также ниже 40 С.

Кроме этого, обращайте внимание на степень защиты, так как большинство электродвигателей не предназначены для работы во взрывоопасных помещениях. По последним данным, ежегодно из строя выходит около 20% двигателей в год, что происходит в результате физического износа инструментов. Обязательно проводите диагностику двигателя и соблюдайте правила эксплуатации, что обеспечит долгосрочный срок службы.

Что необходимо проверять при работе двигателей

Контролируйте наличие и исправность прокладок, а также состояние фланцевых соединений, которые обеспечивают защиту прибора от любых внешних воздействий. Кроме этого, нужно обращать внимание на целостность изоляционных деталей и на наличие защиты от перегрузки. Следите за состоянием средств контроля уровня масла, высотой слоя масла, соответствием масла необходимым нормативным требованиям, а также обеспечивайте исправность системы подачи защитного газа в вентиляторах, фильтрах и трубопроводах.

Установку электрических двигателей следует доверять только проверенным компаниям. Желательно не монтировать электродвигатель самостоятельно, особенно, если Вы не знаете особенностей подключения электрических составляющих. Наша компания может вам предложить не только монтаж двигателей, но и ремонт электродвигателей , вышедших из строя.