Простая схема для проверки lm358. Как работать с ОУ LM358: схемы включения и практическое применение

Операционный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.

Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам. А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики , позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах , эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам . Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон . Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Особенности включения

Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:

  • неинвертирующий усилитель;
  • преобразователь ток-напряжение;
  • преобразователь напряжение-ток;
  • дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
  • дифференциальный усилитель с интегральной схемой регулирования коэффициента;
  • схема контроля тока;
  • преобразователь напряжение-частота.

Популярные схемы на lm358

Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.

Неинвертирующий усилитель и источник опорного напряжения

Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.

Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.

Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина . При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.

Усилитель

Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.

Усилитель термопары на LM358

Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника . Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.

Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 о С с достаточно высокой точностью до 0,02 о С. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.

Простая схема регулятора тока

Схема включает кремниевый диод . Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.

Схема состоит из нескольких компонентов:

  • Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
  • Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.

Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором , эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.

В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.

Зарядное устройство на LM 358

С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения. Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает. А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.

Самый популярный двухканальный операционный усилитель LM358, LM358N. Операционник относится к серии LM158, LM158A, LM258, LM258A, LM2904, LM2904V. Имеет множество схем включения, аналогов и datasheet.

Микросхемы LM358 и LM358N идентичны по параметрам и отличаются только корпусом.

Вам будут интересны даташиты и характеристики других ИМС , . Они применяются совместно с импульсными стабилизаторами и блоках питания.


  • 1. Характеристики, описание
  • 2. Таблица характеристик.
  • 3. Цоколёвка, распиновка
  • 4. Аналог
  • 5. Типовые схемы включения
  • 6. Datasheet, даташит LM358 LM358N

Характеристики, описание

Питание ИМС может быть однополярным от 3 до 32В. Операционный усилитель стабильно работает на стандартных 3,3В. Двухполярное питание от 1,5 до 16 Вольт. При указанной температуре 0° до 70° характеристики остаются в пределах нормы. Если количество градусов выйдет за эти пределы, то появится отклонение параметров.

Многих интересует описание на русском LM328N, но даташит большой, основная часть понятна и без перевода. Чтобы вы не искали LM358 datasheet на русском, составил таблицу основных параметров.

Несколько популярных datasheet для скачивания:

Таблица характеристик.

Параметр LM358, LM358N
Питание, вольт 3-32В
Биполярное питание ±1,5В до ±16В
Потребляемый ток 0,7мА
Напряжение смещения по входу 3мВ
Ток смещения компенсации по входу 2нА
Входной ток смещение 20нА
Скорость нарастания на выходе 0,3 В/мсек
Ток на выходе 30 — 40мА
Максимальная частота 0,7 до 1,1 МГц
Коэффициент дифференциального усиления 100дБ
Рабочая температура 0° до 70°

Микросхемы различных производителей могут иметь разные параметры, но всё в пределах нормы. Единственное может сильно отличаться максимальная частота у одних она 0,7МГц, у других до 1,1МГц. Вариантов использования ИМС накопилось очень много, только в документации их около 20 штук. Радиолюбители расширили это количество более 70 схем.

Типовой функционал из datasheet на русском:

  1. компараторы;
  2. активные RC фильтры;
  3. светодиодный драйвер;
  4. суммирующий усилитель постоянного тока;
  5. генератор импульсов и пульсаций;
  6. низковольтный детектор пикового напряжения;
  7. полосовой активный фильтр;
  8. для усиливания с фотодиода;
  9. инвертирующий и не инвертирующий усилитель;
  10. симметричный усилитель;
  11. стабилизатор тока;
  12. инвертирующий усилитель переменного тока;
  13. дифференциальный усилитель постоянного тока;
  14. мостовой усилитель тока.

Цоколёвка, распиновка

Аналог

..

Большая популярность определяет и большое количество аналогов LM358 LM358N. В зависимости от производителя характеристики могут немного меняться, но всё в пределах допуска. Перед заменой проверьте электрические характеристики у изготовителя, вдруг вам не подойдёт. Схемы включения аналогичны. Аналогов более 30 штук, покажу первую дюжину полностью схожих:по параметрам:

  1. КР1040УД1
  2. КР1053УД2
  3. КР1401УД5
  4. GL358
  5. NE532
  6. OP295
  7. OP290
  8. OP221
  9. OPA2237
  10. TA75358P
  11. UPC1251C
  12. UPC358C

Типовые схемы включения

Пришлось просмотреть несколько спецификаций от разных фабрик, чтобы найти самый полноценный. Большинство короткие и малоинформативные. Чтобы было максимально понятно, как работают схемы включения LM358 и LM358N, ознакомитесь с типовым включением.


Datasheet, даташит LM358 LM358N

Сфера применения, указанная производителями:

  1. блюрэй плееры и домашние кинотеатры;
  2. химические и газовые сенсоры;
  3. ДВД рекордеры и плееры;
  4. цифровые мультиметры;
  5. сенсор температуры;
  6. системы управления двигателями;
  7. осциллографы;
  8. генераторы;
  9. системы определения массы.

В этой статье поговорим еще об одном зарядном устройстве для автомобиля. Заряжать будем аккумуляторы стабильным током. Схема зарядного изображена на рисунке 1.

В качестве сетевого трансформатора в схеме применен перемотанный трансформатор от лампового телевизора ТС-180, но подойдут и ТС-180-2 и ТС-180-2В. Для перемотки трансформатора сначала его аккуратно разбираем, не забыв при этом заметить какими сторонами был склеен сердечник, путать положение U-образных частей сердечника нельзя. Затем сматываются все вторичные обмотки. Экранирующую обмотку, если будете пользоваться зарядным только дома, можно оставить. Если же предполагается использование устройства и в других условиях, то экранирующая обмотка снимается. Снимается так же и верхняя изоляция первичной обмотки. После этого катушки пропитываются бакелитовым лаком. Конечно пропитка на производстве происходит в вакуумной камере, если таких возможностей нет, то пропитаем горячим способом – в горячий лак, разогретый на водяной бане, бросаем катушки и ждем с часик, пока они не пропитаются лаком. Потом даем лишнему лаку стечь и ставим катушки в газовую духовку с температурой порядка 100… 120˚С. В крайнем случае обмотку катушек можно пропитать парафином. После этого восстанавливаем изоляцию первичной обмотки той же бумагой, но тоже пропитанной лаком. Далее мотаем на катушки по… сейчас посчитаем. Для уменьшения тока холостого хода, а он явно возрастет, так как необходимой ферропасты для склеивания витых, разрезных сердечников у нас нет, будем использовать все витки обмоток катушек. И так. Число витков первичной обмотки (см. таблицу) равно 375+58+375+58 = 866витков. Количество витков на один вольт равно 866витков делим на 220 вольт получаем 3,936 ≈ 4витка на вольт.


Вычисляем количество витков вторичной обмотки. Зададимся напряжением вторичной обмотки в 14 вольт, что даст нам на выходе выпрямителя с конденсаторами фильтра напряжение 14 √2 = 19,74 ≈ 20вольт. Вообще, чем меньше это напряжение, тем меньшая бесполезная мощность в виде тепла будет выделяться на транзисторах схемы. И так, 14 вольт умножаем на 4витка на вольт, получаем 56 витков вторичной обмотки. Теперь зададимся током вторичной обмотки. Иногда требуется быстрехонько подзарядить аккумулятор, а значит требуется увеличить на некоторое время зарядный ток до предела. Зная габаритную мощность трансформатора – 180Вт и напряжение вторичную обмотки, найдем максимальный ток 180/14 ≈ 12,86А. Максимальный ток коллектора транзистора КТ819 – 15А. Максимальная мощность по справочнику данного транзистора в металлическом корпусе равна 100Вт. Значит при токе12А и мощности 100Вт падение напряжения на транзисторе не может превышать… 100/12 ≈ 8,3 вольта и это при условии, что температура кристалла транзистора не превышает 25˚С. Значит нужен вентилятор, так как транзистор будет работать на пределе своих возможностей. Выбираем ток равный 12А при условии, что в каждом плече выпрямителя уже будет стоять по два диода по 10А. По формуле:

0,7 умножаем на 3,46, получаем диаметр провода?2,4мм.

Можно уменьшить ток до 10А и применить провод диаметром 2мм. Для облегчения теплового режима трансформатора вторичную обмотку можно не закрывать изоляцией, а просто покрыть дополнительно еще слоем бакелитового лака.

Диоды КД213 устанавливаются на пластинчатые радиаторы 100×100х3мм из алюминия. Их можно установить непосредственно на металлический корпус зарядного через слюдяные прокладки с использованием термопасты. Вместо 213- х можно применить Д214А, Д215А, Д242А, но лучше всего подходят диоды КД2997 с любой буквой, типовое значение прямого падения напряжения у которых равно 0,85В, значит при токе заряда 12А на них выделится в виде тепла 0,85 12 = 10Вт. Максимальный выпрямленный постоянный ток этих диодов равен 30А, да и стоят они не дорого. Микросхема LM358N может работать с напряжениями входного сигнала близкими к нулю, отечественных аналогов я не встречал. Транзисторы VT1 и VT2 можно применить с любыми буквами. В качестве шунта применена полоска из луженой жести. Размеры моей полоски вырезанной из консервной банки ()– 180×10х0,2мм. При указанных на схеме номиналах резисторов R1,2,5 ток регулируется в пределах примерно от 3 до 8А. Чем меньше номинал резистора R2, тем больше ток стабилизации устройства. Как рассчитать добавочное сопротивление для вольтметра прочитайте .

Об амперметре. У меня, полоска вырезанная по указанным выше размерам, совершенно случайно имеет сопротивление 0,0125Ом. Значит при прохождении через ее тока в 10А, на ней упадет U=I R = 10 0,0125=0,125В = 125млВ. В моем случае примененная измерительная головка имеет сопротивление 1200 Ом при температуре 25˚С.

Лирическое отступление. Многие радиолюбители, основательно подгоняя шунты для своих амперметров, почему то никогда не обращают внимание на температурную зависимость всех элементов собираемых ими схем. Разговаривать на эту тему можно до бесконечности, я вам приведу лишь небольшой пример. Вот активное сопротивление рамки моей измерительной головки при разных температурах. И для каких условий рассчитывать шунт?

Это означает, что ток выставленный в домашних условиях, не будет соответствовать току выставленном по амперметру в холодном гараже зимой. Если вам это по барабану, то сделайте просто переключатель на 5,5А и 10… 12А и ни каких приборов. И не бойся, как бы их не разбить, это еще один большой плюс зарядного устройства со стабилизацией тока заряда.

И так, дальше. При сопротивлении рамки равном 1200Ом и токе полного отклонения стрелки прибора 100мкА нам нужно подать на головку напряжение 1200 0,0001=0,12В = 120млВ, что меньше, чем падение напряжения на сопротивлении шунта при токе 10А. Поэтому последовательно измерительной головке поставьте дополнительный резистор, лучше подстроечный, что бы не мучиться с подборкой.

Монтаж стабилизатора выполнен на печатной плате (см. фото 3). Максимальный ток заряда для себя я ограничил шестью амперами, поэтому при токе стабилизации 6А и падении напряжения на мощном транзисторе 5В, выделяемая мощность при этом равна 30Вт, и обдуве вентилятором от компьютера, данный радиатор нагревается до температуры 60 градусов. С вентилятором это много, необходим более эффективный радиатор. Примерно определить необходимую . Мой вам всем совет — ставьте радиаторы рассчитанные для работы ПП приборов без куллеров, пусть лучше размеры прибора увеличатся, но при остановке этого куллера, ни чего не сгорит.

При анализе выходного напряжения осциллограмма его была сильно зашумлена, что говорит о нестабильности работы схемы т.е. схема подвозбуждалась. Пришлось дополнить схему конденсатором С5, что обеспечило стабильность работы устройства. Да, еще, для того, что бы уменьшить нагрузку на КТ819, я уменьшил напряжение на выходе выпрямителя до 18В (18/1,41 = 12,8В т.е. напряжение вторичной обмотки у моего трансформатора равно 12,8В). Скачать рисунок печатной платы. До свидания. К.В.Ю.

При настройке всевозможных радиоэлектронных устройств зачастую бывает, необходим блок питания, в котором реализована функция плавной регулировки, как выходного напряжения, так и значения тока по перегрузке.

Защита блока питания от перегрузки

В большинстве простых блоков, реализована защита блока питания от перегрузки только по превышению максимального тока нагрузки. Подобная электронная защита, главным образом, предназначается для самого блока питания, а не для подключенной к нему нагрузки.

Для надежного функционирования, как блока питания, так и подсоединенного к нему электронного устройства, желательно иметь возможность изменения порога срабатывания защиты по току в больших пределах, причем при срабатывании защиты подключенная нагрузка должна быть обесточена.

Приведенная в данной статье схема является еще одним вариантом , позволяющая производить плавную регулировку всех перечисленных выше параметров.

Описание работы регулируемого блока питания

(DA1.1) построен регулируемый стабилизатор напряжения. С вывода R2 на его прямой вход (вывод 3) идет опорное напряжение, величина которого устанавливается стабилитроном VD1, а на инверсный вход (вывод 2) поступает потенциал ООС с эмиттера транзистора VT1 через резисторный делитель напряжения R10 и R7.

Отрицательно обратная связь создает баланс напряжений на обоих входах ОУ LM358, возмещая воздействие дестабилизирующих причин. Путем вращения ручки потенциометра R2 осуществляется изменение выходного напряжения блока питания.

Блок защиты от перегрузки по току построен на втором операционном усилителе DA1.2, входящем в состав микросхемы LM358 , который используется в данной схеме в качестве компаратора. На его прямой вход через сопротивление R14 идет напряжение с датчика тока нагрузки (сопротивление R13), а на инверсный вход поступает опорное напряжение, постоянство которого обеспечивает диод VD2.

До тех пор пока падение напряжения, формируемое током нагрузки на сопротивлении R13, ниже опорного, потенциал на выходе 7 операционного усилителя DA1.2 практически равен нулю. В том случае, если ток нагрузки превзойдет допустимый, потенциал на выходе DA1.2 возрастет до напряжения питания. В результате этого через сопротивление R9 пойдет ток, который откроет транзистор VT2 и зажжет светодиод HL1. Диод VD3 начинает пропускать ток и сквозь сопротивление R11 шунтирует электрическую цепь ПОС. Транзистор VT2 подсоединяет сопротивление R12 параллельно стабилитрону VD1, и как следствие этого напряжение на выходе блока питания снижается фактически до нуля из-за закрытия транзистора VT1.

Заново подключить нагрузку возможно непродолжительным выключением сетевого питания или путем нажатия на кнопку SA1. Для защиты транзистора VT1 от обратного напряжения, идущего с емкости С5, которое возникает при отсоединении нагрузки от блока питания, в схему добавлен диод VD4.

Детали блока питания

Транзистор VT2 возможно поменять на . Транзистор VT1 можно заменить на произвольный из серий КТ827, КТ829. Диоды VD2 — VD4 возможно применить КД522Б. Сопротивление R13 возможно собрать из трех впараллель соединенных резисторов МЛТ-1 сопротивлением по 1 Ом каждый. Стабилитрон VD1 любой с напряжением стабилизации 7…8 вольт и током от 3 до 8 мА. Емкости СЗ, С4 произвольные пленочные или керамические. Электролитические конденсаторы: С1 — К50-18 или аналогичный зарубежный, другие — марки К50-35. Кнопка SA1 без фиксации.