Лазерный светодиод схема включения. Лазерный диод-принцип работы, ток лазерного диода

Лазерные диоды — ранее изготовление лазеров было связано с большими трудностями, так как для этого необходим маленький кристалл и разработка схемы для его функционирования. Для простого радиолюбителя такая задача была невыполнимой.

С развитием новых технологий возможность получения лазерного луча в бытовых условиях стала реальностью. Электронная промышленность сегодня производит миниатюрные полупроводники, которые могут генерировать луч лазера. Этими полупроводниками стали лазерные диоды.

Повышенная оптическая мощность и отличные функциональные параметры полупроводника позволяют применять его в измерительных устройствах повышенной точности как на производстве, в медицине, так и в быту. Они являются основой для записи и чтения компьютерных дисков, школьных лазерных указок, уровнемеров, измерителей расстояния и многих других полезных для человека устройств.

Возникновение такого нового электронного компонента является революцией в создании электронных устройств разной сложности. Диоды высокой мощности образуют луч, который используется в медицине при выполнении различных хирургических операций, в частности по восстановлению зрения. Луч лазера способен быстро произвести коррекцию хрусталика глаза.

Лазерные диоды используются в измерительных приборах в быту и промышленности. Устройства изготавливают с разной мощностью. Мощности 8 Вт хватит для сборки в бытовых условиях портативного уровнемера. Этот прибор надежен в работе, способен создать лазерный луч очень большой длины. Попадание лазерного луча в глаза очень опасно, так как на малом расстоянии луч способен к повреждениям мягких тканей.

Устройство и принцип работы

В простом диоде на анод подается положительное напряжение, то речь идет о смещении диода в прямом направлении. Дырки из области «р» инжектируются в область «n» р-n перехода, а из области «n» в область «р» полупроводника. При расположении дырки и электрона рядом друг с другом, то они рекомбинируют и выделяют фотонную энергию с некоторой длиной волны и фонона. Этот процесс получил название спонтанного излучения. В светодиодах он является главным источником.

Но при некоторых условиях дырка и электрон способны находиться перед рекомбинацией в одном месте продолжительное время (несколько микросекунд). Если по этой области в это время пройдет фотон с частотой резонанса, то он вызовет вынужденную рекомбинацию, и при этом выделится второй фотон. Его направление, фаза и вектор поляризации будут абсолютно совпадать с первым фотоном.

Кристалл полупроводника изготавливают в виде тонкой пластинки формы прямоугольника. По сути дела, эта пластинка и играет роль оптического волновода, в котором излучение действует в ограниченном объеме. Поверхностный слой кристалла модифицируется с целью образования области «n». Нижний слой служит для создания области «р».

В конечном итоге получается плоский переход р-n значительной площади. Два боковых торца кристалла подвергают полировке для создания параллельных гладких плоскостей, образующих оптический резонатор. Случайный фотон перпендикулярного плоскостям спонтанного излучения пройдет по всему оптическому волноводу. При этом перед выходом наружу фотон несколько раз будет отражаться от торцов и, проходя вдоль резонаторов, создаст вынужденную рекомбинацию, образуя при этом новые фотоны с такими же параметрами, чем вызовет усиление излучения. Когда усиление превзойдет потери, начнется создание лазерного луча.

Существуют различные типы лазерных диодов. Основные из них выполнены на особо тонких слоях. Их структура способна создавать излучение только параллельно. Но если волновод выполнить широким в сравнении с длиной волны, то он будет функционировать уже в различных поперечных режимах. Такие лазерные диоды называют многодомовыми.

Использование таких лазеров оправдано для создания повышенной мощности излучения без качественной сходимости луча. Допускается некоторое его рассеивание. Этот эффект используется для накачки других лазеров, в химическом производстве, лазерных принтерах. Однако при необходимости определенной фокусировки луча, волновод должен выполняться с шириной, сравнимой с длиной волны.

В этом случае ширина луча зависит от границ, которые наложены дифракцией. Такие приборы используются в запоминающих оптических устройствах, оптоволоконной технике, лазерных указателях. Необходимо заметить, что эти лазеры не способны поддержать несколько продольных режимов, и излучать лазерный луч на разных длинах волн в одно время. Запрещенная зона между уровнями энергии «р» и «n» областей диода влияет на длину волны луча.

Лазерный луч на выходе сразу расходится, так как излучающий компонент очень тонкий. Чтобы компенсировать это явление и создать тонкий луч, используют собирающие линзы. Для широких многодомовых лазеров используются цилиндрические линзы. В случае однодомовых лазеров, при применении симметричных линз, лазерный луч будет иметь эллиптическое поперечное сечение, так как вертикально расхождение превосходит размер луча в горизонтальной плоскости. Наглядным примером для этого служит лазерная указка.

В рассмотренном элементарном устройстве нельзя выделить определенную длину волны, кроме волны оптического резонатора. В устройствах, имеющих материал, способный усилить луч в большом интервале частот, и с несколькими режимами, возможно действие на разных волнах.

Обычно лазерные диоды функционируют на одной волне, обладающей, однако значительной нестабильностью, и зависящей от различных факторов.

Разновидности

Устройство рассмотренных выше диодов имеет n-р структуру. Такие диоды имеют низкую эффективность, требуют значительную мощность на входе, и работают только в режиме импульсов. По-другому они работать не могут, так как быстро перегреются, поэтому не получили широкого применения на практике.

Лазеры с двойной гетероструктурой имеют слой вещества с узкой запрещенной зоной. Этот слой находится между слоями материала, у которого широкая запрещенная зона. Обычно для изготовления лазера с двойной гетероструктурой применяют арсенид алюминия-галлия и арсенид галлия. Каждыи из этих соединений с двумя разными полупроводниками получили название гетероструктуры.

Достоинством лазеров с такой особенной структурой является то, что область дырок и электронов, которую называют активной областью, находится в среднем тонком слое. Следовательно, что создавать усиление будут намного больше пар дырок и электронов. В области с малым усилением таких пар останется мало. В дополнение свет станет отражаться от гетеропереходов. Другими словами излучение будет полностью находиться в области наибольшего эффективного усиления.

Диод с квантовыми ямами

При выполнении среднего слоя диода более тонким, он начинает функционировать в качестве квантовой ямы. Поэтому электронная энергия будет квантоваться вертикально. Отличие между уровнями энергии квантовых ям применяется для образования излучения вместо будущего барьера.

Это эффективно для управления волной луча, зависящей от толщины среднего слоя. Такой вид лазера намного эффективнее, в отличие от однослойного, так как плотность дырок и электронов распределена более равномерно.

Гетероструктурные лазерные диоды

Основной особенностью тонкослойных лазеров является то, что они не способны эффективно удерживать луч света. Для решения этой задачи по обеим сторонам кристалла прикладывают два дополнительных слоя, которые обладают более низким преломлением, в отличие от центральных слоев. Подобная структура похожа на световод. Она намного лучше удерживает луч. Это гетероструктуры с отдельным удержанием. По такой технологии произведено большинство лазеров в 90-х годах.

Лазеры с обратной связью в основном применяют для волоконно-оптической связи. Для стабилизации волны на р-n переходе выполняют поперечную насечку для создания дифракционной решетки. Из-за этого в резонатор возвращается и усиливается только одна длина волны. Такие лазеры имеют постоянную длину волны. Она определена шагом насечки решетки. Под действием температуры насечка изменяется. Подобная модель лазера является основой телекоммуникационных оптических систем.

Существуют также лазерные диоды VСSЕL и VЕСSЕL , которые являются поверхностно-излучающими моделями с вертикальным резонатором. Их отличие состоит в том, что у модели VЕСSЕL резонатор внешний, и его конструкция бывает с оптической и токовой накачкой.

Особенности подключения

Лазерные диоды используются во многих устройствах, где необходим направленный световой луч. Основным процессом в сборке устройства с применением лазера своими руками является правильное подключение.

Лазерные диоды отличаются от led диодов миниатюрным кристаллом. Поэтому в нем концентрируется большая мощность, а следовательно и величина тока, что может привести к выходу его из строя. Для облегчения работы лазера существуют особые схемы устройств, которые называются драйверами.

Лазерам необходимо стабильное питание. Однако существуют их модели, имеющие красное свечение луча, и функционирующие в нормальном режиме даже с нестабильной сетью. Если имеется драйвер, то все равно диод нельзя подключать напрямую. Для этого дополнительно нужен датчик тока, роль которого часто играет резистор, подключенный между этими элементами.

Такое подключение имеет недостаток в том, что отрицательный полюс питания не соединен с минусом схемы. Другим недостатком является падение мощности на резисторе. Поэтому перед подключением лазера необходимо тщательно подобрать драйвер.

Виды драйверов

Существуют два главных вида драйверов, способных обеспечить нормальный режим эксплуатации лазерных диодов.

Импульсный драйвер выполнен по аналогии импульсного преобразователя напряжения, способного повышать и понижать этот параметр. Мощности выхода и входа такого драйвера примерно равны. Однако, существует некоторое выделение тепла, на которое расходуется незначительное количество энергии.

Линейный драйвер действует по схеме, которая чаще всего подает напряжение на диод больше, чем требуется. Для его снижения необходим транзистор, преобразующий излишнюю энергию в теплоту. Драйвер имеет малый КПД, поэтому не нашел широкого применения.

При применении линейных микросхем в качестве стабилизаторов, при уменьшении напряжения на входе диодный ток будет снижаться.

Так как питание лазеров выполняется двумя видами драйверов, схемы подключения имеют отличия.

Схема также может содержать источник питания в виде батареи или аккумулятора.

Аккумуляторы должны выдавать напряжение 9 вольт. Также в схеме должен быть резистор, ограничивающий ток, и лазерный модуль. Лазерные диоды можно найти в неисправном приводе дисков от компьютера.

Лазерный диод имеет 3 вывода. Средний вывод подключается к минусу (плюсу) питания. Плюс подключается к правой, либо левой ножке, в зависимости от фирмы изготовителя. Чтобы определить нужную ножку для подключения, необходимо подать питание. Для этого можно взять две батарейки по 1,5 В и сопротивление 5 Ом. Минус источника подключают к средней ножке диода, а плюс сначала к левой, затем к правой ножке. Путем такого эксперимента можно увидеть, какая из этих ножек является «рабочей». Таким же методом диод подключают к микроконтроллеру.

Лазерные диоды могут работать от пальчиковых батареек, аккумулятора сотового телефона. Однако нельзя забывать, что дополнительно требуется ограничивающий резистор номиналом 20 Ом.

Подключение к бытовой сети

Для этого нужно обеспечить вспомогательную защиту от всплесков напряжения высокой частоты.


Стабилизатор и резистор создают блок предотвращающий перепады тока. Для выравнивания напряжения применяют стабилитрон. Емкость предотвращает возникновение скачков напряжения высокой частоты. При правильной сборке обеспечивается стабильная работа лазера.

Порядок подключения

Наиболее удобным для работы будет красный диод мощностью около 200 мВт. Такие лазерные диоды установлены на дисковые приводы компьютеров.

  • Перед подключением с помощью батарейки проверить работу лазерного диода.
  • Выбрать необходимо самый яркий полупроводник. Если диод взят из дискового привода компьютера, то он светит инфракрасным светом. Луч лазера запрещается наводить на глаза, так как это приведет к повреждению глаз.
  • Диод монтировать на радиатор для охлаждения, в виде алюминиевой пластины. Для этого предварительно сверлить отверстие.
  • Между диодом и радиатором промазать термопастой.
  • Резистор на 20 Ом и 5 ватт подключить по схеме с батарейками и лазером.
  • Диод шунтировать керамическим конденсатором любой емкости.
  • Отвернуть от себя диод и проверить его работу, подключив питание. Должен появиться красный луч.

При подключении следует помнить о безопасности. Все соединения должны быть качественными.

У многих в детстве были лазерные указки, которые можно было приобрести в игрушечных магазинах. Но с развитием современных технологий появилась возможность создать такой лазер из своими руками. Для этого понадобится всего лишь неисправный DVD привод (важно, чтобы оставался исправным сам светодиод), отвертка и паяльник.

Следует помнить, что для создания лазера лучше использовать нерабочий DVD! Это связано с тем, что после разборки и извлечения светодиода он выходит из строя. Не стоит забывать, что такой лазер из привода намного мощнее обычной указки и может нанести непоправимый вред здоровью, поэтому никогда не нужно направлять луч на человека или животное.

При наведении луча такого устройства на человеческий глаз происходит выжигание сетчатки, и человек может частично или полностью потерять зрение.

Итак, давайте создадим лазер из DVD привода своими руками. Для этого необходимо аккуратно открутить болты на задней части корпуса, чтобы добраться до светодиода будущего лазера. Под крышкой находится узел, который осуществляет привод каретки. Для того чтобы ее извлечь, нужно открутить шурупы и отключить все шлейфы. Затем извлекают каретку.

Теперь необходимо ее разобрать, для чего следует открутить множество шурупов. Далее будут обнаружены два светодиода. Один из них инфракрасный, он отвечает за чтение информации с диска.

Нужен красный, при помощи которого происходит прожиг информации на диск. К красному светодиоду будет прикреплена печатная плата. Для того чтобы ее отключить, необходимо воспользоваться паяльником. Для проверки работоспособности диода достаточно подключить к нему две пальчиковые батареи, но важно учитывать их полярность. Помните, что лазерный диод хрупкий, поэтому с ним необходимо быть очень аккуратным.

Далее нужно приобрести любую лазерную указку. Создавая лазер из DVD привода своими руками, используйте ее в качестве "донора" для корпуса. После покупки необходимо аккуратно раскрутить указку на две части и извлечь из верхней половины Для этого можно воспользоваться ножом. Важно делать все аккуратно, потому что может повредиться диод. При помощи маленькой отвертки выбирают излучатель. Используя термоклей, устанавливают новый светодиод в корпус. А чтобы он прочно установился, можно использовать пассатижи, давя ими на края диода.

Лазер из DVD привода своими руками практически готов. Перед тем как запустить его, необходимо проверить, правильно ли определена полярность. Теперь смело можно подключать питание. После первого запуска может потребоваться настройка фокусировки. Далее можно установить указку в фонарик и подключить батарейки типа АА. Не стоит забывать, что лазер может прожигать различные предметы, поэтому нужно удалить оргстекло из рассеивателя.

Хорошо настроенный привода может не только прожигать бумагу или поджигать спички, но и оставлять след на оргстекле, взрывать шарики (лучше, чтобы они были черного цвета) и оставлять видимые следы на пластмассе. Если установить диод в головку графопостроителя, можно выполнять гравировку по оргстеклу.

Лазерные указки, с которыми многие из нас игрались в детстве, вполне можно сделать своими руками в домашних условиях. А можно создать достаточно мощное приспособление, которое способно прожигать своим лучом предметы. И для этого нам потребуется лазерный диод, который можно извлечь из DVD-RW проигрывателя.

Лазерный диод, взятый из DVD

Из этой статьи вы узнаете последовательность работы создания самодельного лазерного устройства , обладающего значительной мощностью.

Что понадобится в работе

Чтобы своими руками изготовить лазер, необходимо использовать лазерный диод красного цвета (650нм). Его можно извлечь из сломанного или старого DVD-RW привод.

Обратите внимание! Если прибор сломан, то существует высокая вероятность того, что его лазерный диод остался в рабочем состоянии. Поэтому он вполне пригоден для нашей работы.

Также можно использовать CD-RW привод. Некоторые используют даже пишущий Blu-ray дисковод. Но в таком случае для CD-RW привода будет характерен инфракрасный невидимый луч (780нм), а для Blu-ray дисковода - фиолетовый (405нм).
Кроме того понадобятся также инструменты, чтобы для разбора DVD-RW привода.

Поговорим о проигрывателе

Чтобы достать лазерный диод, взятый из DVD-RW привода, нужно аккуратно разобрать устройство. Для этого нужно понимать устройства привода. Он помещен в специальную металлический теплоотводящий корпус, который еще дополнительно помещен ещё в одну металлическую основу. От вас зависит, стоит ли вытаскивать прибор из такого корпуса или нет.

Обратите внимание! Разбирая DVD-RW прибор, не стоит вытаскивать бескорпусные лд.


DVD-RW привод

Можно также оставить в корпусе радиатор, а вот основы извлечь. Это влияет на качество теплоотвода, который необходим для нашей лазерной установки. Некоторые специалисты утверждают, что когда лд питает неимпульсный ток, то для каретки не будет хватать созданного теплоотвода. Это утверждение будет правильным для определенных моделей привода, а также, если необходимо получить максимальную мощность.
В DVD-RW встроены два лазерных диода. Из них один является инфракрасным и используется для записи и проигрывания CD. А второй красного цвета и применяется проигрывания и записи DVD. Как видим, при желании можно изготовить своими руками целых два лазера.

Обратите внимание! В модели привода BD-RE встроены целых три диода. А вот в современных моделях такого рода устройств применяются сдвоенные лд, установленные на одном кристалле.

В таких сборках нельзя одновременно подключать инфракрасный и красный диоды, если ток имеет большие значения.

О чем стоит помнить при работе

Создавая своими руками лазер необходимо помнить, что лазерный диод может повредиться от статического электричества. Поэтому, чтобы обеспечить нормальную работу данного элемента, необходимо три ножки лд
обмотать неизолированной проволокой.

Обратите внимание! Нельзя направлять в глаза лазерный луч . Его также нельзя направлять на отражающие поверхности. Это может привести к полной или частичной потере зрения.

Требования, которые существуют для работы с лазерами, актуальны и для инфракрасного излучения. Ведь оба эти излучения обладают мощной прожигающей способностью.


Лазерный луч красного цвета

Кроме этого необходимо знать о том, что питание лазерного диода должно осуществляться определенным током. Если ток питания будет превышать определенный порог, то это может привести к перегреву диода. В связи с чем он либо полностью перегорит, либо будет светить как стандартный светодиод.
Для того, чтобы ток имел правильные значения, нужно использовать определенную схему сборки лазера. При этом в ней обязательно должен иметься драйвер. Рассмотрим несколько схем по сборке лазера при использовании лазерного диода, взятого из DVD-RW привода.

Первый вариант сборки

В данной ситуации необходимо использовать следующую схему сборки устройства на основе лазерного диода, извлеченного из DVD-RW привода.


Схема сборки

Минусом такой схемы является наличие ситуации проседания напряжения аккумулятора в момент разрядки, что вызывает линейное падение степени яркости лазера.
Чтобы собрать лазерную установку по приведенной схеме, нужен не только диод, но и конденсаторы с любым напряжением (от 3В). На схеме они отмечен значком C1 и С2. Емкость первого конденсатора должна быть 0,1 мкФ, а второго – 100 мкФ. Они защитят диод от статического электричества, а также обеспечат плавный переход процессов. Когда конденсаторы были подсоединены к лазерному источнику света, с выводом можно будет снять проволоку. При соединении к диоду один из выводов на корпус будет подавать минус. В тоже время второй вывод будет плюсом, а третий – не применяется. Расположение плюсов достаточно хорошо показано на второй схеме, которая будет описана ниже.
Стоит знать, что на корпус некоторых диодов подается плюс (например, у 808нм лд). Для сдвоенных моделей характерно наличие среднего вывода для общего минуса (G), а крайний – C для питания DVD, CD, D.
Запитать такую схему можно от мобильного аккумулятора или 3 аккумулятора АА.

Обратите внимание! При сборке схемы необходимо учитывать, что напряжение аккумулятора может отличаться от указанного. Особенно это заметно сразу же после его зарядки. При 3,7 В может иметься 4,2 В. В связи с этим аккумулятор необходимо проверять мультиметром.

При этом ток также может иметь отличные значения. К примеру, при соответствующих скоростях записи DVD-RW привода, лазерный диод может иметь следующие значения таких параметров, как мощность и ток:

  • при скорости 16 мощность составит 200мВт, а ток - 250-260мА;
  • при скорости 18 мощность составит 200мВт, а ток - 300-350мА;
  • при скорости 20 мощность составит 270мВт, а ток - 400-450мА;
  • при скорости 22 мощность составит 300мВт, а ток - 450-500мА;
  • при скорости 24 мощность составит 300мВт, а ток - 450-500мА.


Инфракрасный диод

Инфракрасный диод CD-RW привода будет иметь мощность в 100-200мВт. Для сравнения, фиолетовый в BLU-RAY RW - от 60 до 150мВт, а в не пишущих моделях -15 мВт.
Перед сборкой данной схемы, при использовании лазерного диода DVD привода, необходимо узнать, какое сопротивление требуется для резистора R1. Для этого можно использовать формулу R1=(Uвх.-Uпад.)/I , в которой:

  • Uвх. – напряжение, идущее от аккумулятора;
  • Uпад. - падение напряжения, которое принимает диод. Красный диод должен примерно иметь Uпад. равное 3 В. Такое напряжение пойдет для маломощного не пишущего DVD привода. Для инфракрасного диода Uпад. составит примерно 1,9 В, а для фиолетового или синего – 5,5 В и 4-4,4 В соответственно;
  • I - сила тока. Ее можно узнать из специальной таблицы.

При сборке лазера многие специалисты рекомендуют использовать резисторы большего сопротивления , чем получилось при расчетах. Это позволит защитить полупроводник от тока чрезмерного значения. Используя мультиметр, далее можно будет уменьшить сопротивление.

Второй вариант сборки

В данном случае при сборке лазерной установки необходимо руководствоваться следующей схемой.


Схема сборки лазерной установки

Данная схема, в отличие от вышеописанной не имеет проблем с падением яркости лазера. Эта проблема была решена благодаря применению в схеме
специального регулируемого стабилизатора (например, КРЕН12А или его распространенного аналога LM317T).
При этом необходимо знать, что выбранный стабилизатор является компенсационным. Он подает напряжение примерно на 1.4 В больше, чем требуется. В результате, чтобы получить в схеме на лазерный диод 3 В нужно подать от 4.4 В до 37 В. При этом на выходе все равно будет 3 В (конечно, при условии правильно подобранных резисторов).
Если на схему подавать меньше 4.4 В, то яркость лазера начнет падать, что характерно для первой схемы. В результате возникнет ситуация, аналогичная разрядке аккумулятора. Для диодов 780нм на схему потребуется подавать от 3,8 В до 37 В. Поэтому в такой ситуации данная схема может оказаться неэффективной, так как вольт-амперная характеристика здесь будет сильно плавать в зависимости от температуры окружающей среды . А это может привести к перегоранию схемы, если повышение значения тока вовремя не удаётся отследить.

Обратите внимание! Некоторые специалисты считают, что данный эффект характерен для синих лазерных диодов.

Чтобы избежать перегрева, необходимо до полного разогрева источника света измерять ток. Это позволить устранить риск повышения предельно допустимого значения тока.
Специалисты рекомендуют использовать сопротивление для R1 в значении Ом. А для определения параметра R2 необходимо использовать следующую формулу: R2=R1*(Uвых.-Uопор.)/Uопор.
Следует знать, что первоначально R2 нужно ставить несколько меньше, чем было получена цифра при вычислениях. При этом следует одновременно к диоду подключить последовательно мультиметр, чтобы оценивать силу тока. Это позволит избежать ситуации появления тока чрезмерного значения.
В этой схеме допускается использование таких же конденсаторов, как и в предыдущей. А вот резисторы должны быть более качественными, особенно их подключение. Если во время работы установки произойдет обрыв контакта (размыкание цепи), то из-за возросшего напряжения светодиодный диод перегорит.

Фокусировка светового потока в луч

Создавая лазерную установку и используя для этого диод, извлеченный из DVD-RW привода, необходимо понимать, что испускаемый свет будет аналогичным стандартному светодиоду.


Свечение светодиода

Но нам же необходим лазерный луч. Чтобы его сделать, необходимо использовать коллиматор – специальную линзу. С ее помощью будет происходить фокусирование светового потока в луч. Отличным решением будет применение в устройстве линзы, взятой из старой лазерной указки. Устанавливая ее при помощи гаек и пружин, появится возможность более точной фокусировки лазера (его приближение и удаление). Также линзу можно прикрепить к лазерному диоду с помощью эпоксидного клея или двухстороннего скотча.
Из-за того, что не всегда можно отыскать мощный диод, в данной ситуации рекомендуется использовать модель 808нм.


Получение зеленого луча

С помощью кристалла определенного цвета можно получить лазерный луч зеленого, желтого, красного и синего цвета.

Заключение

С помощью лазерного диода, извлеченного из DVD-RW привода, можно своими руками создать лазерную установку. Используя различные кристаллы, можно сфокусировать луч и придать ему необходимую расцветку. При этом необходимо обязательно учитывать особенности работы с таким приспособлением, чтобы получить желаемый результат и не ухудшить свое зрение.

Рекомендуемые статьи по темеКак собрать блок питания с регуляторами своими руками Обзор устройства беспроводных уличных светильников с датчиками движения Почему стоит обратить внимание на микроволновые датчики движения

Наверно у всех еще с детства была мечта иметь свой собственный мощный лазер , способный прожигать стальные листы, теперь мы можем на шаг приблизиться к мечте! листы стали резать не будет, а вот пакеты, бумагу, пластмассу легко!
Для нашего лазера нам понадобится во первых сломанный или не очень резак! причем DVD-RW . чем выше скорость записи DVD-R, тем мощнее там стоит лазер! в 16х приводах стоят 200мВт красные лазеры, а также лазер ИК диапазона, но о нем позже.

Разбираем резак ,
вытаскиваем оптическую часть.Вот так выглядит эта часть резака:



ценного там только выходная линза и два лазера.

Теперь достаем самое главное!

А теперь техника безопасности для вас и для лазера!

лазер из DVD-RW относится к классу 3B, а значит опасен для зрения! не направляйте луч в глаза! даже глазом моргнуть не успеете, как потеряете зрение! парнишка на одном форуме засветил себе нечаянно, попал на несколько тысяч уёв. это ему считай повезло. сфокусированным лучом ослепить можно и со ста метров! смотрите куда светите!

Как можно испортить ЛД?
Да очень просто! стоит превысить ток и ему конец! причем доли микросекунд будет достаточно!
именно поэтому ЛД боятся статического электричества. Оберегайте ЛД от него!
на смом деле ЛД не сгорает, просто рушится оптический резонатор внутри и ЛД превращается в
обычный светодиод. резонатор рушится не от тока, а от световой интенсивности, которая в свою
очередь от тока и зависит. Также надо быть внимательным к температуре. при охлаждении лазера
КПД его растет и при том же токе интенсивность возрастает и может разрушить резонатор! Осторожнее!
Еще его легко убить переходными процессами, возникающими при включении и выключении! от
них стоит защититься.

Теперь продолжим разбирать привод))
Достаем лазер и его радиатор, сразу же припаеваем к его ногам небольшой
неполярный конденсатор на 0,1мкФ и полярный побольше! так мы спасем
его от статики и переходных процессов, которые ЛД очень не любят!
Теперь время подумать о питании нашего лазера.ЛД питается примерно
от 3V и потребляет 200мА. Лазер это не лампочка!! никогда не соединяйте
его напрямую к батарейкам! без ограничительного резистора его убьют и
2 батарейки от лазерной указки!! ЛД нелинейный элемент, поэтому питать его
надо не напряжением, а током! то есть нужны токо ограничивающие элементы.
рассмотрим три схемы питания ЛД от простейшей, к наиболее сложной.
Все схемы питаются от аккумуляторов.
1 вариант
ограничение тока резистором. см рисунок


сопротивление резистора определяется экспериментально, по току через ЛД.
стоит остановиться на 200мА, дальше риск спалить больше.
хотя мой ЛД и на 300мА работал прекрасно. для питания подойдут три любых
аккумулятора на нужную емкость. также удобно использовать аккумулятор от
мобильного телефона(любого).


Пробный запуск

Подключив питание, видим потребление 200мА и пучок яркого света.



В темноте работает как фонарик.


Линза для фокуссировки

Луч получился совсем не «лазерный». Нужна линза для регулировки фокусного расстояния. Для начала вполне подойдет линза из того же привода.




Через линзу получается сфокусировать луч, но без жесткого корпуса занятие утомительное.


Изготовление корпуса

В Интернете встречал описание, где люди использовали лазерные указки или фонарик в качестве корпуса. Тем более что и линзы там уже есть. Но, во-первых, у нас не оказалось под рукой лазерной указки нужного размера. А, во-вторых, это увеличило бы бюджет мероприятия. А я уже говорил, что лично у меня это уменьшает удовольствие от полученного результата.
Мы начали пилить алюминиевый профиль.






Обязательно нужно все изолировать.


Линза

Линзу прикрепили на пластилин для регулировки ее положения.





Кстати, эта линза работает лучше, если ее перевернуть выпуклой частью к лазерному диоду.



Регулируем и получаем более-менее собранный луч.




Точно отрегулировать, наверное, можно, но нам и этого хватило, чтобы черный пластик начал плавиться.



Спичка мгновенно загоралась.





Черная изолента разрезалась как ножом по маслу.





Из этого лазера получилась бы отличная пушка для игры в солдатики.





Видео

На видео видна скорость воздействия лазера на некоторые материалы (белый лист, надпись маркером на бумаге, черный пластик и черная изолента, нитка, пластилин).

DVD ЛАЗЕР "ДЫМОК"

Многие занимаются изготовлением всяких ненужных, но прикольных девайсов, не стал исключением и я. Решил по примеру многих сделать лазер из DVD - прожигающего диода, выдранного из нерабочего ДВД-пишущего привода. Итак, просим своего радиокота помочь раскрутить компьютер:


Потом снимаем крышку привода и вытаскиваем планку, на которой установлен л азер из DVD.


Для подключения его к аккумулятору, можно использовать специализированную со стабилизацией тока. Но эти микросхемы стоят 5-10$, а сгорают при неправильной наладке в момент! К тому-же их не везде достанешь. Поэтому решено было сделать свою схему питания, как оказалось прекрасно работающую, ещё и вместе с зарядным устройством от 220В.


Аккумулятор: никель-кадмиевые пальчики 3 шт или литий-ионник от мобильника. Итак приступаем, берём из дивидишника диод-


Говорят они боятся статики, но я никаких мер по защите не принимал и всё равно не сгорели. А вот когда поднимал ток свыше 0.3А - вылетали в момент. Четыре штуки спалил! Запихиваем весь этот лазер из DVD в какой-нибудь подходящий корпус, например китайский фонарик,



Линзу для фокусировки я сначала взял от того-же ДВД привода , но как оказалось с ней работает лазер плохо - фокусировка ни к чёрту. Пришлось идти на базар и тратить доллар на покупку лазерной указки. Вот её линза просто супер - фокусирует в точку .


И к тому же удобно крепится! В качестве бонуса, имеем три пуговичных 1,5в батарейки, кнопку и очень яркий красный светодиод. Спереди фонарика, вместо стекла ставим круглый кусок пластмассы с отверстием 10 мм для луча. Вот и всё, боевой лазер из DVD "дымок" готов!


Поджигает спички за 1 метр, заставляет хорошо дымиться дерево, резину, пластмассу, чёрную бумагу. Ток потребления - до 0.3А, но рекомендую не устанавливать предельный, а снизить до безопасных 0.2А. Ещё будет лучше, если питать его от со сверхнизким падением напряжения - 0.05В.

По всем вопросам пишите на

В разделе есть вакантные места для фотографий Ваших лазеров и других девайсов!

Под термином «лазерный диод » понимается лазер полупроводникового типа, основа конструкции которого представлена диодом. Принцип работы такого лазера строится на том, что после того, как в диод были инжектированы носители заряда в зоне p-n — перехода возникает инверсия населённостей.

Принцип работы лазерного диода

Всегда необходимо помнить, что при формировании излучения больше важен не ток лазерного диода, а напряжение. В момент подачи на анодный конец диода положительного потенциала, наблюдается смещение диода по прямому направлению. Это подразумевает инжекцию дырок из p-области в n-область и аналогичную инжекцию электронов в обратном направлении. Расположение электрона и дырки в достаточной близости для проявления эффекта туннелирования делает возможной их рекомбинацию. Данное действие сопровождается образованием:

  • Фотонов, имеющих определённую длину волны (результат принципа сохранения энергии);
  • Фононов (компенсируют забираемые фотонами импульсы).

Явление носит название спонтанного излучения и применительно к светодиодам считается главным методом создания излучения.

Рис 1 Конструкция лазерного диода.

Если рекомбинирование электрона и дырки, несмотря на общую пространственную область, не происходит весьма долго. Пересечение этой области фотоном с резонансной частотой провоцирует процесс вынужденной рекомбинации, результатом которой становится формирование другого фотона, полностью совпадающего с первым по всем значимым параметрам.

Особенности конструкции

Кристалл полупроводника лазерного диода представляет собой весьма тонкую прямоугольную пластинку. Деление на p и n области здесь происходит по принципу не лево-право, а верх-низ. То есть, вверху расположена p-область, а внизу — n-область.

Как результат: площадь p-n — перехода достаточно велика. Для торцевых (боковых) сторон обязательна полировка, поскольку формирование оптического резонатора (Фабри-Перо) требуются наличие параллельных плоскостей абсолютной гладкости. Перпендикулярно направленный в отношении одной из таких плоскостей случайный фотон (сформированный спонтанным излучением) будет двигаться по всему оптическому волноводу, периодически отражаясь от боковых граней, пока наконец не покинет резонатор.

Во время движения этот фотон станет причиной нескольких актов вынужденной рекомбинации, формирования подобных фотонов и усиления излучения. В момент, когда усиление достаточно для перекрытия потерь, происходит лазерная генерация.

Разновидности лазерных диодов

  • P-n гомоструктурный диод.

В большинстве случаев слой лазерного диода весьма тонок и генерация фотонового потока происходит параллельно структуре этого слоя. Однако, при конструкции достаточной ширины, диод может функционировать в поперечном варианте. Это многомодовые диоды, и их использование демонстрирует высокую мощность излучения в комбинации с высокой его расходимостью.

С целью обеспечения лучшей фокусировки по ширине волновод должен сопоставляться с длиной волны излучения.

Ввиду малой толщины излучающего элемента и дифракции наблюдается сильное расхождение луча в момент выхода. Компенсировать данный эффект можно при помощи собирающих линз. В случае с многомодовыми лазерами обычно используют линзы цилиндрического типа. А если для стандартного лазера применить симметричные линзы, то луч в сечении приобретёт форму эллипса поскольку в вертикальном направлении луч расходится сильнее, чем в горизонтальном.

Лазерный диоды данного типа не отличаются эффективностью. Для их работы применяется большая входная мощность и импульсное воздействие (позволяющее избежать перегрева). В производстве они практически не используются.

  • Лазерный диод с двойной гетероструктурой (ДГС).

Особенностью диодов данного типа является то, что в них кристаллический слой, имеющий более узкую запрещённую зону, фиксируется между двух кристаллических слоёв, имеющих более широкую запрещённую зону.

Большим плюсом моделей данного типа является увеличение активной области (распространяющуюся практически на весь средний слой) и усиление потока фотонов (благодаря дополнительному отражению света от гетеропереходов).

  • Лазерный диод с квантовыми ямами.

При более сильном истончении среднего слоя в диодах ДГС-типа, его свойства изменяются таким образом, что он превращается в квантовую яму. Таким образом по вертикали электронная энергия будет подвергаться квантованию.

Рис 2 Лазерный диод — вид разрезе

Разность энергетических уровней квантовых ям может быть использована излучения взамен возможного барьера. Это позволяет регулировать длину волны при излучении, определяемую толщиной среднего слоя. Более эффективный вариант ввиду равномерности распределения электронов и дырок.

  • Лазерный диод с гетероструктурой и раздельным удержанием

Гетероструктурные лазеры с тонким слоем имеют один весомый недостаток — они не в состоянии эффективно удерживать свет. Для разрешения проблемы к двум сторонам кристалла крепится по дополнительному слою. По коэффициенту преломления эти слои уступают центральным. Общая конструкция при этом становится подобна световоду. Наибольший процент лазерных диодов сформирован по данной технологии.

  • Лазерные диоды с распределением обратной связи (РОС).

Лазеры РОС-типа применяются для многочастотных волоконно-оптических связей. При помощи поперечной насечки в области p-n — перехода, необходимой для формирования дифракционной решётки, становится возможной стабилизация длины волны. Конкретное её значение зависит от параметров насечки, однако возможны некоторые деформации под действием температурных всплесков. Лазеры данного типа применяются преимущественно для телекоммуникаций и оптики.

  • VCSEL

Лазер поверхностного излучения, снабжённый вертикальным резонатором. Это означает, что свет будет направлен перпендикулярно относительно грани кристалла, в то время как лазеры других типов излучают свет параллельно кристаллу.

  • VECSEL

Аналогичен по свойствам предыдущему варианту, но оснащён внешним резонатором.

Драйвер для лазерного диода

Выходная оптическая мощность лазерного диода (являющая одной из основных оптических характеристик) находится в зависимости от тока, проходящего по p-n — переходу. Ввиду этого драйвер лазерного диода обязательно должен соотноситься с источником тока. Все характеристики относящиеся к источнику тока отражаются на параметрах оптической мощности.

В сферу «обязанностей» драйвера входит не только регулировка мощности, но и терморегуляция, осуществляемая через охладитель. Конструкция управляющего блока при этом может быть как совмещённой, так и раздельной.

Рис з Схема простейшего драйвера лазерного диода

Как подключить лазерный диод

Питать лазерный диод можно при помощи:

  1. Батарей;
  2. Аккумуляторных источников питания;
  3. Стационарных сетей на 220 В (при соответствующей защите от перепадов тока и напряжения).

Подключение лазерного диода к сети на 220 вольт опасно выбросами напряжения и высокочастотными всплесками. Чтобы обеспечить в защиту при данном варианте, потребуется конструкция, включающая в себя:

  • Стабилизатор напряжения;
  • Конденсатор;
  • Токоограничивающие резисторы;
  • Лазерный диод.

При использовании всех приведённых компонентов можно гарантировать безопасность эксплуатации диода.

Рис 4 Одно из подключений лазерного диода

Излучение с какой длиной волны может производить лазерный диод?

Единица измерения длины волны, которую может продуцировать лазерный диод — нм , иначе «нанометры». Благодаря этому значению можно определить цветовой спектр испускаемого светового луча:

  • 650 нанометров

Поток фотонов красного цвета наиболее часто используется в конструкциях дисководов. При дневном свете луч этого лазера виден не очень хорошо, но причина этому только невосприимчивость человеческого зрения. При мощности от 20-50 мВт и фокусировки светового пятна в минимально возможную по площади точку проявляется эффект «жжения». Мощность на 200 мВт при правильной фокусировке позволяет резать бумагу различной плотности.

  • 532 нанометра.

Зелёный поток. Лазеры данного типа очень хрупки и чувствительны к температурным всплескам, требуют крайне осторожного обращения. К тому же обладают сложным устройством и до недавнего времени были крайне дорогими.

Главный положительный момент их применения: зрительно излучение на 532 нм наиболее хорошо различимо. Поэтому использовать лазер зелёного цвета мощнее, чем на 5мВт будет небезопасно для зрения. Кроме того, в силу особенностей конструкции вместе с зелёным спектром лазер поставляет и инфракрасный с длиной волны на 808 нм и 1064 нм, а это только повышает травмоопасность такого прибора. Правда в более дорогих экземплярах стоят специальные фильтры, но это обязательно нужно проверять.

  • 405 нанометров.

Фиолетовое излучение. Опасно тем, что слабо различимо для человеческого глаза и кажется слабым по мощности, хотя на деле ситуация строго противоположная. Его трудно сфокусировать. В общем, в целях эксплуатации не самый удобный вариант. Может быть актуален разве что при работе с фоторезисторами.

  • 780 нанометров.

Инфракрасное излучение. Опасно в силу того, что не воспринимается человеческим зрением от слова совсем. А это грозит различными травмами зрения. Работа возможна только при отсутствии инфракрасного фильтра, что обеспечит хотя бы относительную видимость луча.

  • 10 микрометров.

Излучение также инфракрасное с надбавкой CO2. Наиболее широко применяется в промышленности. Подобные лазеры имеют низкую стоимость, высокую мощность и отличаются высоким КПД. Используются данные лазерные диоды для резки металла или фанеры. С их помощью выполняется гравировка.

Мечта о маленьком карманном лазере стала реальностью с появлением и развитием полупроводниковых лазерных диодов. В просторах интернета достаточно много статей о том, как можно сделать выжигающий лазер из привода для компакт дисков. Но не стоит ограничиваться только этой информацией.

Выбор лазерного диода:

Если вы задались серьёзной целью сделать лазер то просмотрите справочник и выберете подходящий по параметрам лазерный диод. Если нет у вас есть неисправный DVD RW привод — то вам придется раскошелится и купить лазерный светодиод. Причём в этом случае, вы можете в меру своих финансовых возможностей, подобрать лазер нужной вам мощности. А как с ним быть дальше? Рекомендую прочитать и прислушаться к нашей статье что бы не тратить время на сборку сомнительных схем подключения лазерного диода.

Классификация лазерных установок:

В лазерном пучке концентрируется высокая энергия и потому существует опасность повредить зрение при неосторожном обращении с лазерами. Существует классификация опасности лазерных установок в соответствии с EN60825-1 рисунок №1.


Рисунок №1 – Классификация опасности лазерных установок

При работе с лазерными диодами нужно СТРОГО СОБЛЮДАТЬ ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ. Нельзя направлять луч лазера прямо в глаза, это может привести к полной или частичной потере зрения. Не давайте вашу лазерную установку детям, не оставляйте её в легкодоступных местах! Исключайте возможность не санкционированного (случайного) включения лазера, используйте ваше творение только в мирных целях!!! Одевайте защитные очки при настройке и работе с ним.

О лазерном диоде:

Как правило, лазерный диод это миниатюрное устройство с тремя (рисунок №2) или четырьмя ножками в зависимости от типа.

Рисунок № 2 – Внешний вид лазерного светодиода с тремя ножками

Почему три ножки? Дело в том что внутри корпуса находится кроме лазерного излучающего диода ещё и фотодиод рисунок №3.

Риснок №3 – Схема лазерного светодиода

Фотодиод предназначен для того чтобы управлять (регулировать или ограничивать) током лазера. Конструктивно это выглядит так: рисунок №4.


Рисунок №4 – Лазерный диод вразрезе.

Маломощные лазерные диоды эксплуатируются с напряжениями в несколько вольт и силой тока в диапазоне примерно от 50 до 80 мА. Указанный в соответствующих паспортах на них (Datasheet). Например рабочий ток (50-60 мА) ни в коем случае нельзя превышать! Опасны также им­пульсные перегрузки. Поэтому при питании лазерного светодиода нужно принимать во внимание то, чтобы такие пики отсутствовали. Надежнее всего использо­вать в качестве источника питания для диода не блок питания, а батареи. Но это не всегда подходит – особенно если вы хотите сделать стационарную установку.

Итак, если вы желаете подключить ваш лазерный диод (ЛД) к не стабилизированному (простому) блоку питания рекомендую воспользоваться схемой рисунок №5:

Рисунок №5 – Схема подключения ЛД к нестабилизированному источнику питания

С1– 10 мкФ
С2 – 47 пФ
С3,С4 – 10 нФ
R1 – 10 К
R2 – 1,5 К
R3 – 33 Ом
VT1 – ВС548
VT2 –BD675
VD1 – Лазерный диод
VD2 – 3,3 В/ 1,3Вт
Благодаря такому подключению лазерного диода можно предотвратить его выход из строя. Падение напряжения на резисторе R2 открывает транзистор VT 1, он управляет током базы транзистора VT 2. В контуре регулирования ток фотодиода колеблется около 400 мкА. Конденсатор С4 устраняет импульсные помехи, а емкостной делитель напряжения, состоящий из конденсаторов С2 и СЗ, обеспечивает запуск процесса регулирования сразу при подаче напряжения питания.

Мой вариант лазера:

Я тоже попробовал сделать лазер из DVD RW привода и хочу сразу вас предупредить, что идея хорошая, но реализовать её достаточно сложно. Разбирать рабочий DVD RW привод это глупо, а в поломанных приводах, как правило, лазерный диод уже палёный и восстановлению не подлежит. Даже если вам всё же удалось вынуть рабочий лазерный диод, то будьте готовы к тому, что к нему необходима специальная собирающая линза, так как сам по себе лазерный диод светит не сфокусировано. А что б сформировать требуемое расхождение луча вам понадобиться хорошая оптика. Линзы от DVD RW привод не дают желаемый эффект. Я просто купил готовый лазерный модуль типа HLDPM12-655-5 (в корпусе с оптикой и защитой от переполюсовки), и подключил его к обыкновенному блоку питания.

Сделать мощный прожигающий лазер своими руками – несложная задача, однако, кроме умения пользоваться паяльником, потребуется внимательность и аккуратность подхода. Сразу стоит отметить, что глубокие познания из области электротехники здесь не нужны, а смастерить устройство можно даже в домашних условиях. Главное при работе – это соблюдение мер предосторожности, так как воздействие лазерного луча губительно для глаз и кожи.

Лазер – опасная игрушка, которая может нанести вред здоровью при его неаккуратном использовании. Запрещается направлять лазер на людей и животных!

Что потребуется?

Любой лазер можно разбить на несколько составляющих:

  • излучатель светового потока;
  • оптика;
  • источник питания;
  • стабилизатор питания по току (драйвер).

Чтобы сделать мощный самодельный лазер, потребуется рассмотреть все эти составляющие по отдельности. Наиболее практичным и простым в сборке является лазер на основе лазерного диода, его и рассмотрим в данной статье.

Откуда взять диод для лазера?

Рабочий орган любого лазера – это лазерный диод. Его можно купить почти в любом магазине радиотехнике, либо достать из нерабочего привода для компакт-дисков. Дело в том, что неработоспособность привода редко связана с выходом из строя лазерного диода. Имея в наличии сломанный привод можно без лишних затрат достать нужный элемент. Но нужно учесть, что его тип и свойства зависят от модификации привода.

Самый слабый лазер, работающий в инфракрасном диапазоне, установлен в CD-ROM дисководах. Его мощности хватает только для считывания CD дисков, а луч почти невидим и не способен прожигать предметы. В CD-RW встроен более мощный лазерный диод, пригодный для прожига и рассчитанный на ту же длину волны. Он считается наиболее опасным, так как излучает луч в невидимой для глаза зоне спектра.

Дисковод DVD-ROM оснащён двумя слабыми лазерными диодами, энергии которых хватает только для чтения CD и DVD дисков. В пишущем приводе DVD-RW установлен красный лазер большой мощности. Его луч виден при любом освещении и может легко воспламенять некоторые предметы.

В BD-ROM стоит фиолетовый или синий лазер, который по параметрам схож с аналогом из DVD-ROMа. Из пишущих BD-RE можно достать наиболее мощный лазерный диод с красивым фиолетовым или синим лучом, способным к прожигу. Однако найти для разборки такой привод достаточно сложно, а рабочее устройство стоит дорого.

Самым подходящим является лазерный диод, взятый из пишущего привода DVD-RW дисков. Наиболее качественные лазерные диоды установлены в LG, Sony и Samsung приводах.

Чем выше скорость записи DVD привода, тем мощнее установлен в нем лазерный диод.

Разбор привода

Имея перед собой привод, первым делом снимают верхнюю крышку, открутив 4 винта. Затем извлекают подвижный механизм, который находится в центре и соединён с печатной платой гибким шлейфом. Следующая цель – лазерный диод, надёжно впрессованный в радиаторе из алюминиевого или дюралевого сплава. Перед его демонтажем рекомендуется обеспечить защиту от статического электричества. Для этого выводы лазерного диода спаивают или обматывают тонкой медной проволокой.

Далее возможны два варианта. Первый подразумевает эксплуатацию готового лазера в виде стационарной установки вместе со штатным радиатором. Второй вариант – это сборка устройства в корпусе переносного фонарика или лазерной указки. В этом случае придётся приложить силу, чтобы раскусить или распилить радиатор, не повредив излучающий элемент.

Драйвер

К питанию лазера необходимо отнестись ответственно. Как и для светодиодов, это должен быть источник стабилизированного тока. В интернете встречается множество схем с питанием от батарейки или аккумулятора через ограничительный резистор. Достаточность такого решения сомнительна, так как напряжение на аккумуляторе или батарейки меняется в зависимости от уровня заряда. Соответственно ток, протекающий через излучающий диод лазера, будет сильно отклоняться от номинального значения. В результате на малых токах устройство будет работать не эффективно, а на больших – приведёт к быстрому снижению интенсивности его излучения.

Оптимальным вариантом считается использование простейшего стабилизатора тока, построенного на базе . Данная микросхема относится к разряду универсальных интегральных стабилизаторов с возможностью самостоятельного задания тока и напряжения на выходе. Работает микросхема в широком диапазоне входных напряжений: от 3 до 40 вольт.

Аналогом LM317 является отечественная микросхема КР142ЕН12.

Для первого лабораторного эксперимента подойдет схема, приведенная ниже. Расчет единственного в схеме резистора производят по формуле: R=I/1,25, где I – номинальный ток лазера (справочное значение).

Иногда на выходе стабилизатора параллельно диоду устанавливают полярный конденсатор на 2200 мкФх16 В и неполярный конденсатор на 0,1 мкФ. Их участие оправдано в случае подачи напряжения на вход от стационарного блока питания, который может пропустить незначительную переменную составляющую и импульсную помеху. Одна из таких схем, рассчитанная на питание от батарейки «Крона» или небольшого аккумулятора, представлена ниже.

На схеме указано примерное значение резистора R1. Для его точного расчета необходимо воспользоваться вышеприведенной формулой.

Собрав электрическую схему, можно сделать предварительное включение и как доказательство работоспособности схемы, наблюдать ярко-красный рассеянный свет излучающего диода. Измерив его реальный ток и температуру корпуса, стоит задуматься о необходимости установки радиатора. Если лазер будет использоваться в стационарной установке на больших токах длительное время, то нужно обязательно предусмотреть пассивное охлаждение. Теперь для достижения цели осталось совсем немного: произвести фокусировку и получить узконаправленный луч большой мощности.

Оптика

Выражаясь по-научному, пришло время соорудить простой коллиматор, устройство для получения пучков параллельных световых лучей. Идеальным вариантом для этой цели будет штатная линза, взятая из привода. С её помощью можно получить довольно тонкий луч лазера диаметром около 1 мм. Количества энергии такого луча достаточно, чтобы насквозь прожигать бумагу, ткань и картон в считаные секунды, плавить пластик и выжигать по дереву. Если сфокусировать более тонкий луч, то данным лазером можно резать фанеру и оргстекло. Но настроить и надежно закрепить линзу от привода достаточно сложно из-за ее малого фокусного расстояния.

Намного проще соорудить коллиматор на основе лазерной указки. К тому же в её корпусе можно поместить драйвер и небольшой аккумулятор. На выходе получится луч в диаметре около 1,5 мм меньшего прожигающего действия. В туманную погоду или при обильном снегопаде можно наблюдать неимоверные световые эффекты, направив световой поток в небо.

Через интернет-магазин можно приобрести готовый коллиматор, специально предназначенный для крепления и настройки лазера. Его корпус послужит радиатором. Зная размеры всех составных частей устройства, можно купить дешевый светодиодный фонарик и воспользоваться его корпусом.

В заключение хочется добавить несколько фраз об опасности лазерного излучения. Во-первых, никогда не направляйте луч лазера в глаза людей и животных. Это приводит к серьёзным нарушениям зрения. Во-вторых, во время экспериментов с красным лазером надевайте зелёные очки. Они препятствуют прохождению большей части красной составляющей спектра. Количество света, прошедшее сквозь очки, зависит от длины волны излучения. Смотреть со стороны на луч лазера без защитных средств допускается лишь кратковременно. В противном случае может появиться боль в глазах.

Читайте так же