Трансформаторы импульсных источников. Космическая технология

Рис. 1. Схема платы сетевого фильтра.

В советских телевизорах Горизонт Ц-257 применялся импульсный источник питания с промежуточным преобразованием напряжения сети частотой 50 Гц в импульсы прямоугольной формы с частотой следования 20...30 кГц и последующим их выпрямлением. Выходные напряжения стабилизируются путем изменения длительности и частоты повторения импульсов.

Источник выполнен в виде двух функционально законченных узлов: модуля питания и плата сетевого фильтра . В модуле обеспечена развязка шасси телевизора от сети, а элементы, гальванически связанные с сетью, закрыты экранами, ограничивающими доступ к ним.

Основные технические характеристики импульсного блока питания

  • Максимальная выходная мощность, Вт ........100
  • Коэффициент полезного действия ..........0,8
  • Пределы изменения напряжения сети, В ......... 176...242
  • Нестабильность выходных напряжений, %, не более ..........1
  • Номинальные значения тока нагрузок, мА, источников напряжений, В:
    135
    ....................500
    28 ....................340
    15 ..........700
    12 ..........600
  • Масса, кг ..................1

Рис. 2 Принципиальная схема модуля питания.

Он содержит выпрямитель сетевого напряжения (VD4-VD7), каскад запуска (VT3), узлы стабилизации (VT1) и блокировки 4VT2), преобразователь (VT4, VS1, Т1), четыре однополупериодных выпрямителя выходных напряжений (VD12-VD15) и компенсационный стабилизатор напряжения 12 В (VT5-VT7).

При включении телевизора напряжение сети через ограничительный резистор и цепи помехоподавления, расположенные на плате фильтров питания, поступает на выпрямительный мост VD4-VD7. Выпрямленное им напряжение через обмотку намагничивания I импульсного трансформатора Т1 проходит на коллектор транзистора VT4. Наличие этого напряжения на конденсаторах С16, С19, С20 индицирует светодиод HL1.

Положительные импульсы сетевого напряжения через конденсаторы С10, С11 и резистор R11 заряжают конденсатор С7 каскада запуска. Как только напряжение между эмиттером и базой 1 однопереходного транзистора VT3 достигает 3 В, он открывается и конденсатор С7 быстро разряжается через его переход эмиттер - база 1, эмиттерный переход транзистора VT4 и резисторы R14, R16. В результате транзистор VT4 открывается на 10...14 мкс. За это время ток в обмотке намагничивания I возрастает до 3...4 А, а затем, когда транзистор VT4 закрыт, уменьшается. Возникающие при этом на обмотках II и V импульсные напряжения выпрямляются диодами VD2, VD8, VD9, VD11 и заряжают конденсаторы С2, С6, С14: первый из них заряжается от обмотки II, два других - от обмотки V. При каждом последующем включении и выключении транзистора VT4 происходит подзарядка конденсаторов.

Что же касается вторичных цепей, то в начальный момент после включения телевизора конденсаторы С27- СЗО разряжены, и модуль питания работает в режиме, близком к короткому замыканию. При этом вся энергия, накопленная в трансформаторе Т1, поступает во вторичные цепи, и автоколебательный процесс в модуле отсутствует.

По окончании зарядки конденсаторов колебания остаточной энергии магнитного поля в трансформаторе Т1 создают такое напряжение положительной обратной связи в обмотке V, которое приводит к возникновению автоколебательного процесса.

В этом режиме транзистор VT4 открывается напряжением положительной обратной связи, а закрывается напряжением на конденсаторе С14, поступающим через тиристор VS1. Происходит это так. Линейно нарастающий ток открывшегося транзистора VT4 создает на резисторах R14 и R16 падение напряжения, которое в положительной полярности через ячейку R10C3 поступает на управляющий электрод тиристор VS1. В момент, определяемый порогом срабатывания, тиристор открывается, напряжение на конденсаторе С14 оказывается приложенным в обратной полярности к эмиттерному переходу транзистора VT4, и он закрывается.

Таким образом, включение тиристора задает длительность пилообразного импульса коллекторного тока транзистора VT4 и соответственно количество энергии, отдаваемой во вторичные цепи.

Когда выходные напряжения модуля достигают номинальных значений, конденсатор С2 заряжается настолько, что напряжение, снимаемое с делителя R1R2R3, становится больше напряжения на стабилитроне VD1 и транзистор VT1 узла стабилизации открывается. Часть его коллекторного тока суммируется в цепи управляющего электрода тиристора с током начального смещения, создаваемым напряжением на конденсаторе С6, и током, возникающим под действием напряжения на резисторах R14 и R16. В результате тиристор открывается раньше и коллекторный ток транзистора VT4 уменьшается до 2...2,5 А.

При увеличении напряжения сети или уменьшении тока нагрузки возрастают напряжения на всех обмотках трансформатора, а следовательно, и напряжение на конденсаторе С2. Это приводит к увеличению коллекторного тока транзистора VT1, более раннему открыванию тиристора VS1 и закрыванию транзистора VT4, а следовательно, к уменьшению мощности, отдаваемой в нагрузку. И наоборот, при уменьшении напряжения сети или увеличении тока нагрузки мощность, передаваемая в нагрузку, увеличивается. Таким образом, стабилизируются сразу все выходные напряжения. Подстроечным резистором R2 устанавливают их начальные значения.

В случае короткого замыкания одного из выходов модуля автоколебаниям срываются. В результате транзистор VT4 открывается только каскадом запуска на транзисторе VT3 и закрывается тиристором VS1 при достижении током коллектора транзистора VT4 значения 3,5...4 А. На обмотках трансформатора появляются пакеты импульсов, следующих с частотой питающей сети и частотой заполнения около 1 кГц. В этом режиме модуль может работать длительное время, так как коллекторный ток транзистора VT4 ограничен допустимым значением 4 А, а токи в выходных цепях - безопасными значениями.

С целью предотвращения больших бросков тока через транзистор VT4 при чрезмерно пониженном напряжении сети (140... 160 В) и, следовательно, при неустойчивом срабатывании тиристора VS1 предусмотрен узел блокировки, который в таком случае выключает модуль. На базу транзистора VT2 этого узла поступает пропорциональное выпрямленному сетевому постоянное напряжение с делителя R18R4, а на эмиттер - импульсное напряжение частотой 50 Гц и амплитудой, определяемой стабилитроном VD3. Их соотношение выбрано таким, что при указанном напряжении сети транзистор VT2 открывается и импульсами коллекторного тока открывает тиристор VS1. Автоколебательный процесс прекращается. С повышением напряжения сети транзистор закрывается и на работу преобразователя не влияет. Для уменьшения нестабильности выходного напряжения 12 В применен компенсационный стабилизатор напряжения на транзисторах (VT5-VT7) с непрерывным регулированием. Его особенность - ограничение тока при коротком замыкании в нагрузке.

С целью уменьшения влияния на другие цепи выходной каскад канала звукового сопровождения питается от отдельной обмотки III.

В импульсном трансформаторе ТПИ-3 (Т1) применен магнитопровод М3000НМС Ш12Х20Х15 с воздушным зазором 1,3 мм на среднем стержне.

Рис. 3. Схема расположения обмоток импульсного трансформатора ТПИ-3.

Намоточные данные трансформатора ТПИ-3 импульсного блока питания приведены :

Все обмотки выполнены проводом ПЭВТЛ 0,45. С целью равномерного распределения магнитного поля по вторичным обмоткам импульсного трансформатора и увеличения коэффициента связи обмотка I разбита на две части, расположенные в первом и последнем слоях и соединенные последовательно. Обмотка стабилизации II выполнена с шагом 1,1 мм в один слой. Обмотка III и секции 1 - 11 (I), 12-18 (IV) намотаны в два провода. Для снижения уровня излучаемых помех введены четыре электростатических экрана между обмотками и короткозамкнутый экран поверх магнитолровода.

На плате фильтров питания (рис. 1) размещены элементы заградительного фильтра L1C1-СЗ, токоограничивающий резистор R1 и устройство автоматического размагничивания маски кинескопа на терморезисторе R2 с положительным ТКС. Последнее обеспечивает максимальную амплитуду тока размагничивания до 6 А с плавным спадом в течение 2...3 с.

Внимание!!! При работе с модулем питания и телевизором необходимо помнить, что элементы платы фильтров питания и часть деталей модуля находятся под напряжением сети. Поэтому ремонтировать и проверять модуль питания и плату фильтров под напряжением можно только при включении их в сеть через разделительный трансформатор.

"Начудили" китайцы в блоке питания тюнера TECHNOSAT 4050C, который вышел из строя. С завода стояла микросхема с маркировкой 5MO2659R, но на самом деле - ЭТО НЕВЕРНАЯ МАРКИРОВКА. Какая это микросхема - не известно, стоящая там явно не подходит в данный блок питания: если её впаять, то получается КЗ по 350 V.

На плате этого блока питания фигурирует надпись VIDER22A, на которую я сразу не обратил внимания. Эта микросхема часто применяется в БП для DVD. Когда я заметил эту надпись, то подумал, что всё решено. Но не тут-то было. Чтоб заработал данный БП пришлось немного попотеть. А именно: я установил отсутствовавшие элементы - резисторы R14:4,7К, R3:22Ом, диод D6FR207, сделал один разрыв в печатном монтаже, так чтоб R14 одной стороной соединялся только с оптопарой, а другой его вывод - с катодом диода D6 и с плюсовым выводом конденсатора С2, и с четвёртым выводом микросхемы U1 (см. фото).

И пришлось не разбирая ТПИ (трансформатор), домотать отсутствующую обмотку проводом ПЭЛ 0,16 четырнадцать витков (см. рис. ниже):

Вид ТПИ снизу

Начало подпаиваем к пустому выводу 1, который идёт на R3 (22Ом), а конец - так же на пустой вывод, который идёт на минус конденсатора С1 (47х400V).

Добавленную обмотку пропитать клеем, например, "Момент". Затем нужно впаять микросхему VIPER22A. Включаем, пользуемся.

Описана принципиальная схема самодельного импульсного блока питания с выходным напряжением +14В и током, достаточным для питания шуруповерта.

Шуруповерт, или аккумуляторная дрель очень удобный инструмент,но есть и существенный недостаток, при активном использовании аккумулятор разряжается очень быстро, - за несколько десятков минут, а на зарядку требуются часы.

Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора.

Но, к сожалению, промышленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора, а также блоки питания от персональных компьютеров и для галогенных осветительных ламп.

Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

Принципиальная схема

Схема частично заимствована из Л.1, вернее, сама идея, сделать нестабилизированный импульсный источник питания по схеме блокинг-генератора на основе трансформатора блока питания телевизора.

Рис. 1. Схема простого импульсного источника питания для шуруповерта, выполнена на транзисторе КТ872.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор на транзисторе VТ1 с трансформатором Т1 на выходе.

Схема на VТ1 - типичный блокинг-генератор. В коллекторной цепи транзистора включена первичная обмотка трансформатора Т1 (1-19). На неё поступает напряжение 300V с выхода выпрямителя на диодах VD1-VD4.

Для запуска блокинг-генератора и обеспечения его стабильной работы на базу транзистора VТ1 поступает напряжение смещения от цепи R1-R2-R3-VD6. Положительная обратная связь, необходимая для работы блокинг-генератора обеспечивается одной из вторичных катушек импульсного трансформатора Т1 (7-11).

Переменное напряжение с неё через конденсатор С4 поступает в базовую цепь транзистора. Диоды VD6 и VD9 служат для формирования импульсов на базе транзистора.

Диод VD5 совместно с цепью C3-R6 ограничивает выбросы положительного напряжения на коллекторе транзистора величиной напряжения питания. Диод VD8 совместно с цепью R5-R4-C2 ограничивает выбросы отрицательного напряжения на коллекторе транзистора VT1. Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18.

Выпрямляется диодом VD7 и сглаживается конденсатором С5. Режим работы выставляется подстроечным резистором R3. Его регулировкой можно не только достигнуть уверенной работы блока питания, но в некоторых пределах отрегулировать выходное напряжение.

Детали и конструкция

Транзистор VT1 должен быть установлен на радиатор. Можно использовать радиатор от блока питания МП-403 или любой другой аналогичный.

Импульсный трансформатор Т1 - готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры некоторое время назад шли на разборку либо вообще выбрасывались. Да и трансформаторы ТПИ-8-1 в продаже присутствуют.

На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6.

Таким образом, можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

На втором рисунке показано как можно сделать выпрямители на вторичных обмотках трансформатора ТПИ-8-1. Эти обмотки можно использовать для отдельных выпрямителей либо включать их последовательно для получения большего напряжения. Кроме того, в некоторых пределах можно регулировать вторичные напряжения, изменяя число витков первичной обмотки 1-19 используя для этого её отводы.

Рис. 2. Схема выпрямителей на вторичных обмотках трансформатора ТПИ-8-1.

Впрочем, этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, - довольно неблагодарная работа. Его сердечник плотно склеен, и при попытке его разделить ломается совсем не там, где ожидаешь.

Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А. В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.

Щеглов В. Н. РК-02-18.

Литература:

1. Компаненко Л. - Простой импульсный преобразователь напряжения для БП телевизора. Р-2008-03.

Шуруповерт, или аккумуляторная дрель очень удобный инструмент, но есть и существенный недостаток, - при активном использовании аккумулятор разряжается очень быстро, - за несколько десятков минут, а на зарядку требуются часы. Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора. Но, к сожалению, промыш-ленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора, а также блоки питания от персональных компьютеров и для галогенных осветительных ламп. Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

И так, схема источника показана на рисунке в тексте статьи.

Это классический обратноходовый AC-DC преобразователь на основе ШИМ генератора UC3842.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор с трансформатором Т1 на выходе. Первоначально запускающее напряжение поступает на вывод питания 7 ИМС А1 через резистор R1. Включается генератор импульсов микросхемы и выдает импульсы на выводе 6. Они подаются на затвор мощного полевого транзистора VT1 в стоковой цепи которого включена первичная обмотка импульсного трансформатора Т1. Начинается работа трансформатора и появляются на вторичных обмотках вторичные напряжения. Напряжение с обмотки 7-11 выпрямляется диодом VD6 и используется
для питания микросхемы А1, которая перейдя на режим постоянной генерации начинает потреблять ток, который не способен поддерживать пусковой источник питания на резисторе R1. Поэтому при неисправности диода VD6 источник пульсирует, - через R1 конденсатор С4 заряжается до напряжения, необходимого для запуска генератора микросхемы, а когда генератор запускается повышенный ток С4 разряжает, и генерация прекращается. Затем процесс повторяется. При исправности VD6 схема сразу после запуска переходит на питание от обмотки 11 -7 трансформатора Т1.

Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18. Выпрямляется диодом VD7 и сглаживается конденсатором С7.
В отличие от типовой схемы здесь не используется схема защиты выходного ключевого транзистора VT1 от повышенного тока сток-исток. А вход защиты -вывод 3 микросхемы просто соединен с общим минусом питания. Причина данного решения в отсутствии у автора в наличии необходимого низкоомного резистора (все-таки приходится делать из того что есть в наличии). Так что транзистор здесь не защищен от перегрузки по току, что конечно не очень хорошо. Впрочем, схема уже долго работает и без данной защиты. Однако, при желании можно легко сделать защиту, следуя типовой схеме включения ИМС UC3842.

Детали. Импульсный трансформатор Т1 -готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры сейчас частенько идут на разборку либо вообще выбрасываются. Да и трансформаторы ТПИ-8-1 в продаже присутствуют. На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6. Таким образом можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

Впрочем этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, - довольно неблагодарная работа. Его сердечник плотно склеен и при попытке его разделить ломается совсем не там, где ожидаешь. Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Транзистор IRF840 можно заменить на IRFBC40 (что в принципе тоже самое), либо на BUZ90, КП707В2.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А.

В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.